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INTRODUCTION

Interest in female sexual behavior and reproduction 
is likely as old as our species. Indeed, one of the old-
est known medical texts, the Kahun Papyrus, found near 
the pyramid in El-Lahoun, Egypt, in 1889 and dated to 
at least 1800 BCE, is a gynecological text that outlines 
causes and treatments for women’s reproductive health 
problems, including problems of fertility, contraception, 
and pregnancy.1 Ancient erotic texts, such as Vatsayana’s 
Kama Sutra (compiled from Hindu writings in the sec-
ond century BCE), Ovid’s Ars Amatoria (c.1 BCE), and 
the Taoist Art of the Bedchamber books (compiled between 
206 BCE and 24 CE), devoted large portions to under-
standing how to court women properly; how to stimu-
late arousal, desire, and pleasure; and how women’s 
receptivity to such courting and stimulation shifted 
across the menstrual cycle.2 The striking similarity in 
descriptions, despite vast differences in culture, suggests 
some degree of commonality in the way women’s sexual 
physiology and psychology are constructed and altered, 
respectively, by ovarian hormones.

The Hippocratic Corpus, dating from the fifth century 
BCE, contains seven early volumes written by Hip-
pocrates himself that were concerned with women’s fer-
tility and diseases specific to women.1 The first of these 
contains an oddly modern account of midcycle rises in 
women’s sexual lust and receptivity, driven of course by 
the lunear impact on women’s “psychic pneuma” (the 
four endogenous fluids—blood, yellow bile, black bile, 

and phlegm—that were thought to mediate the four basic 
emotions of passion, anger, sadness, and calm). Hip-
pocrates also notes that “hysteria” should be treated by 
gentle stimulation of the clitoris and/or vagina to orgasm 
(or sexual intercourse, if the woman is married or has a 
knowledgeable sex partner). It was believed that orgasm 
would center the uterus back into its normal position. 
The second contains a then-comprehensive list of con-
traception methods, including the use of small scrubbed 
stones as intrauterine devices. This practice was based 
on the experiences of Egyptian and Bedouin camel driv-
ers, who routinely placed stones in the uteri of camels to 
prevent pregnancy. It is likely that animal sexual behav-
ior and reproduction have been studied since humans 
started domesticating animals, but largely from a veteri-
nary and/or animal husbandry perspective, and only in 
those species used as pack animals (camels, sheep, don-
keys), for agricultural work (e.g., oxen, horses), or for 
food (e.g., sheep, cattle). In his work Historia Animalium, 
Aristotle (384–322 BCE) described the routine spaying 
(ovariectomy, OVX) of adult sows and camels as com-
mon agricultural practice, done specifically to eliminate 
sexual behavior and control reproduction.3

Rudimentary psychological understanding of sexual 
arousal, desire, pleasure, and inhibition in women can 
be found in art and prose, from ancient religious stories 
(e.g., “Song of Songs”), plays (e.g., Shakespeare’s “The 
Taming of the Shrew”), to myriad love poems written 
throughout the ages, mostly by men about women, but 
also written by women (e.g., the “nine earthly muses” 
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of Ancient Greece, notably Sappho and Praxilla who 
wrote erotic, comic, and tragic poetry about the sexual 
desires of women and men). Most ancient polytheistic 
cultures had women depicted as goddesses of sex and 
fertility. The Aztecs had eight deities—seven of which 
were women—who controlled the intricacies of sex and 
reproduction. However, goddesses of love and carnal-
ity were associated with freedom, war, or mental illness. 
An example of the latter was the Moroccan lust goddess, 
Qandisa, who seduced men and then drove them insane.

Erotic art has existed for a very long time, starting 
with cave drawings of copulation (often between ani-
mals, but also heterosexual and homosexual copula-
tion between adult humans). Fertility statues also exist, 
dating back well over 10,000 years, and almost always 
depicting a full-bodied, reproductively capable woman 
(e.g., the Venus of Willendorf). Erotic art from India, 
Japan, Greece, and Rome during ancient times depicts 
a variety of imaginable sex acts between two or more 
humans, humans and animals, and even humans and 
inanimate objects. Women were depicted masturbating 
and initiating sex. This did not change in Europe dur-
ing the Middle Ages, Reformation, or Enlightenment 
periods, as Néret’s4 Erotica series depicts. Women are 
drawn by many artists with smiles and in full control 
of sexual interaction, again often initiating sex and 
in positions (e.g., female supine) that would maxi-
mize clitoral and inner vaginal stimulation. Women’s 
orgasm was thought to be positively related to fertil-
ity; thus, hints of masturbation were found in artistic 
works throughout these periods. For example, Titian’s 
“Venus of Urbino” of 1538 depicts her reclining sensu-
ally with her hand draped over her mons, her fingers 
easily in position to stimulate her clitoris. Ēdouard 
Manet’s “Olympia” of 1863 has a similar depiction, this 
time with her hand outstretched over her pubis, but her 
forefinger hidden seductively between her legs. There 
is also a large portrayal of women in fetish circum-
stances during the eighteenth century, often controlling 
the man in the action. This is in stark contrast to the 
portrayal of women in a large part of nineteenth and 
twentieth century pre-Internet erotica as being either 
passive exposers of their genitalia or passive and emo-
tionless recipients of male penetration.5

As science and rationalism took hold in Europe and 
the Americas, so did attempts at understanding behavior 
based on deductions about underlying physical causes. 
For female sexual behavior, this began with the nine-
teenth century phrenologists who attempted to under-
stand the nature of female sex drive as a function of the 
size of bumps on the skull that they believed reflected 
the size of the underlying brain structure. Among these 
was the so-called amativeness center at the back base of 
the skull, just over the cerebellum, that allegedly con-
trolled sexual and parental instincts in women.6

Early ethologists began to categorize reproductive 
behavior in the late 1800s. Notable among these descrip-
tions was that of Darwin,7 who discussed sexual selection 
in terms of flexible female choice for male epigamic and/
or behavioral traits of strength. At the same time, physi-
cians in France and the US began to define “hysteria” in 
women as a long-term complication of sexual frustration 
that should be treated with manual clitoral and/or vagi-
nal stimulation. In the 1800s, “muscle beaters” used for 
massage were applied to the clitoris in the treatment of 
“hysteria”. Some of these had long handles that women 
would use on their own to provide clitoral and vaginal 
stimulation. In the late 1800s, vibratory stimulation of the 
clitoris and/or vagina was seen as particularly effective 
in inducing orgasm, and was easily produced electrically 
using saline electrodes with faradaic current applied.8 
Thus the “vibrator” was used in clinical medicine explic-
itly as a means of “electrotherapy” for the treatment of 
“hysteria”. Vibrators were sold by mail order (e.g., from 
successive catalogs of Sears, Roebuck and Co.) up to the 
start of World War II as “Aides that Every Woman Appre-
ciates”. Although these seemed to disappear in the 1940s 
and 1950s, they returned in the 1960s specifically as “sex 
toys” for women. A fascinating account of the develop-
ment of the vibrator can be found in Maines.8

The ovaries had been known since the time of Aris-
totle to be involved in both the generation of offspring 
and in female sexual behavior (for a historical overview, 
see Ref. 9). Despite Aristotle’s writings, it was not until 
1672 that de Graaf explicitly described the ovarian fol-
licle as an “egg” which turned into a corpora lutea when 
the female was impregnated. Van Leeuwenhoek in 1683 
suggested that it was the egg itself that was impregnated 
with sperm. In the nineteenth Century, ovarian function 
was again the focus of scrutiny. The French physician 
Roberts reported that Indian women who underwent 
forcible OVX as prepubertal girls had no sex drive, no 
menstruation, and had retained a boyish appearance 
(meaning no breasts). Although Berthold in 1849 had 
suggested the existence of a floating substance secreted 
by the testes that masculinized body and behavior in 
roosters, nothing was mentioned about the ovaries until 
Brown-Séquard’s claim in 1890 that multiple injections 
of guinea pig and rabbit ovarian extracts could refemi-
nize and excite the passions of OVX, hysterectomized 
women.1 Berthold’s experiment was repeated in 1896 by 
Knauer, but this time grafting ovaries into the abdominal 
cavity of OVX dogs, rabbits, and guinea pigs, and restor-
ing estrous cyclicity and sexual behavior.

The early twentieth century saw experiments aimed at 
discerning the function of the corpora lutea in the timing 
of ovulation and the maintenance of pregnancy. Heape in 
1900 coined the terms estrus, proestrus, diestrus, metes-
trus, and anestrus to describe cytological changes in vagi-
nal epithelium, which were used subsequently in 1922 by 
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Long and Evans to link the stage of the vaginal epithelial 
cycle with sexual (“estrous”) behavior. In 1923, Allen and 
Doisey determined that vaginal cell cornification could 
be used as a bioassay to determine which of the ovarian 
secretions induced it. Parkes and Bellerby in 1926 referred 
to the active secretion, “oestrin”, as the cause of cornifica-
tion, and in 1930 abundant sources of oestrin had been 
found in the late pregnancy urine of Canadian women 
and sold by Ayerst Labs as an orally active source of the 
hormone. In 1929, Butenandt and Doisey determined 
the crystalline structure of estrogens, and in particular 
estradiol-17β, which was the same in the late-pregnancy 
urine of cows, sows, horses, and humans. Progesterone 
was isolated in 1934 and was found to inhibit pregnancy 
when injected alone to a variety of gonadally intact, ovu-
lating animals. Work by Zuckerman in 1937 showed that 
menstruation was the result of atrophy of the corpora 
lutea. These findings together led to the creation of ste-
roid biochemistry, and ultimately the isolation of different 
estrogens and progestins, and the formation of oral con-
traceptives in 1953 by Pincus and Chang.

The other important endocrine question was behav-
ioral. In 1939, Boling and Blandau found that sequential 
injections of estradiol followed 48 h later by progester-
one induced sexual “heat” (lordosis) in OVX female 
rats. This pivotal paper coincided with experiments 
 throughout the 1930s–1950s by Stone, Ball, Beach, 
Larsson,  Yerkes, and Young, among others, examining 
the sexual behavior of female rats, cats, and nonhuman 
primates, such as macaques and chimpanzees, and in 
particular its expression around the time of ovulation 
and how it declined after OVX, and was stimulated. An 
important comparative approach was taken to this, and 
careful analyses were made comparing the expression of 
hormone-driven sexual behavior in animals to humans 
(e.g., Ref. 10). Since the 1930s, oral estrogens derived first 
from urine, and then made synthetically, were used to 
treat menopausal symptoms such as hot flashes. With 
the advent of the birth control pill and its subsequent 
reformulations, hormone replacement therapy was born. 
In the late 1960s, binding sites for estradiol were found 
in the brain independently by Pfaff, Sar, and Stumpf, and 
localized largely in the mediobasal forebrain, notably in 
regions of the hypothalamus and limbic system. The 
molecular actions of those receptors were characterized 
in the 1980s and 1990s by McEwen, Pfaff, and others, and 
their molecular role in the generation of neurotransmit-
ter actions was elucidated.

Drugs of abuse, such as heroin and cocaine, had been 
known since the 1920s to alter reproductive function in 
both women and men and to inhibit sexual arousal and 
desire, along with anorgasmia, in female addicts.11 The 
effects of alcohol on sexual arousal, desire, and repro-
ductive function were legendary.12,13 The study of drug 
effects on sexual behavior began in the 1950s with the 

work of the Soulairacs in France. The role of the newly 
discovered monoamines, dopamine (DA) and serotonin, 
was examined on lordosis in female rats using systemic 
pharmacological treatments by Swedish pharmacologists 
Meyersson, Ahlenius, Södersten, and Malmnäs start-
ing in the mid-1960s through the 1970s. The discovery 
of brain-born neuropeptides and their receptors in the 
1970s and 1980s increased the complexity of the pharma-
cological targets, and individual brain regions, especially 
in the hypothalamus, began to be examined. Large brain 
lesion studies in the 1940s and 1950s showed that decor-
ticate male rats could not copulate, but that OVX females 
receiving estradiol and progesterone could still display 
lordosis.14 More specific brain lesion studies conducted 
largely in rats during the 1960s showed that ablation of 
the medial preoptic area (mPOA) reduced male mount-
ing behavior15 and lesions that included the ventromedial 
hypothalamus (VMH) reduced lordosis in female rats.16,17

The analysis of female sexual behavior in different spe-
cies became more sophisticated during the 1980s and 1990s 
(see below), as did the pharmacological and molecular 
tools applied to its study. Transgenic mouse models were 
made with specific genes deleted (knockouts (KOs)) or 
overexpressed (knock-ins); antisense technology allowed 
researchers to KO specific gene products in different brain 
regions. Microdialysis and voltammetry allowed certain 
monoamines, such as DA and serotonin (5-HT), and small 
molecule neurotransmitters such as acetylcholine (Ach), 
glutamate, and GABA, to be analyzed directly in brain 
regions. Cellular techniques allowed cytoplasmic proteins 
or their mRNA to be labeled in brain slices, and the use of 
immediate-early gene products such as Fos allowed cell-
level localization of activated neurons following copula-
tory stimulation.18 Similar advances were made in human 
brain imaging using functional magnetic resonance imag-
ing (fMRI) and positron emission tomography (PET) 
scanning. These techniques allowed clinical researchers to 
examine brain activation by erotic stimuli and orgasm in 
women (see below).

Sophistication also grew in behavioral analyses of 
sexual function and dysfunction in women, although 
not without heated controversy. In 1948, Kinsey and col-
leagues published Sexual Behavior in the Human Male,19 
which was greeted with a sense of accomplishment and 
intrigue in the postwar West. Five years later, their pub-
lication of Sexual Behavior in the Human Female20 was 
greeted with scandal and denouncement. Nevertheless, 
Kinsey’s work, along with the advent of Playboy as a 
mainstream publication, and the reaction a decade later 
to Human Sexual Response by Masters and Johnson,21 gave 
rise to a “sexual revolution” during the 1960s and 1970s 
that had women question traditional sex roles and tradi-
tional sexual behavior, especially the role of the clitoris as 
the gland of women’s orgasm and sexual pleasure, rather 
than the “mature” vaginal orgasm that Freud22 had thrust 



50. FEMALE SEXUAL BEHAVIOR2290

7. REPRODUCTIVE BEHAVIOR AND ITS CONTROL

into psychoanalytical therapy and psychiatric medicine. 
Hite23,24 wrote two reports on male and female sexuality in 
the sexually liberated 1970s, which saw changing female 
sexual attitudes. However, she still noted sex differences 
in which women were viewed as more “sensate focused” 
and needing more than visual erotic stimuli to arouse 
their sexual interest. Such sex differences in response to 
erotic visual stimuli, however, appear to have waned with 
the advent of the Internet, and with a new generation of 
women who have had easy access to such stimuli.

Sexual disorders, which had been cataloged by psy-
chiatry in various editions of the Diagnostic and Statistical 
Manual of Mental Disorders (DSM) in North America and 
the International Classification of Diseases (ICD) in Europe, 
eliminated homosexuality as a disorder in the mid-1970s 
and reworked sexual behavior disorders in women as 
those of sexual arousal, desire, and orgasm, with sexual 
pain disorders, such as dyspareunia and vaginismus, 
and gender identity disorders as separate disorders. 
Work around the turn of the millienium sought to char-
acterize those disorders as sets of symptoms and apply 
both physiological and subjective assessment techniques 
that could predict symptom severity. As with the  Kinsey 
experience a generation before, the advent of oral treat-
ments for erectile dysfunction in men was hailed in 
light of a new sophisticated neuropharmacology of sex, 
whereas the search for a “female Viagra” has been vilified 
by special-interest groups who are against the so-called 
“medicalization of women’s bodies” by the pharmaceu-
tical industry.25,26 Although androgens were reported to 
increase sexual arousal and desire in both pre- and post-
menopausal women with those disorders, a transdermal 
patch was rejected by the U.S. Food and Drug Adminis-
tration. Despite this, more compounds entered clinical 
trials for the treatment of sexual arousal and desire dis-
orders in the early twenty-first century. Part of that effort 
was aided by preclinical research in rodents and nonhu-
man primates, showing conclusively that drugs that ele-
vated female solicitations in rats also increased measures 
of subjective sexual desire in women. The study of the 
neuroanatomy and neurochemistry of sexual behavior 
has become another “sexual revolution” of neurobiolog-
ically-relevant information about sex—one that moves 
almost seamlessly between species. This begins to real-
ize the challenge put forth by Beach27 to examine the 
physiology of behavior across different species and the 
dream of a truly translational clinical science.

COMMONALITIES, HOMOLOGIES, 
ANALOGIES, AND MODELS

Sexual function is required for the propagation of all 
mammalian species. It not only allows for reproduc-
tion, but it also provides a natural reward that is easily 

accessible to any sexually mature individual in good 
health. Its benefits can be short-term by instilling feel-
ings of satiety, intimacy, and well-being, while long-term 
benefits may include the memory of the sexually satisfy-
ing event, bonding with the partner, in addition to the 
pregnancy and the delivery of offspring. Sexual dys-
function, in contrast, results in feelings of inadequacy 
and a loss of feelings of intimacy and well-being, which 
induces significant distress on individuals and their 
relationships. The etiology of the dysfunction can be due 
to physiological, psychological, or a mixture of factors. 
As such, sexual function in humans involves a complex 
integration of the individual’s biology and physiology 
(including genetics, hormonal states, and neurochemical 
regulation), personal history, expectations, context, and 
culture—all of which impinge on the brain to create or 
inhibit a sexual response.

In all species, sexual behavior is directed by a complex 
interplay between steroid hormone actions in the brain 
that give rise to sexual arousability, and experience with 
sexual reward or pleasure that gives rise to expectations 
of competent sexual activity, including sexual arousal, 
desire, and elements of copulatory performance.28 Sex-
ual experience allows animals to form instrumental and 
Pavlovian associations that predict sexual outcomes 
and thereby direct the strength of sexual responding. 
Although the study of animal sexual behavior by neuro-
endocrinologists has traditionally been concerned with 
mechanisms of copulatory responding related to repro-
duction (e.g., lordosis in females and erections, mounts, 
intromissions, and ejaculations in males), more recent 
use of conditioning and preference paradigms, and a 
focus on environmental circumstances and experience, 
has revealed sexual behaviors in a variety of species that 
are driven by reward-related mechanisms in the brain 
and that are analogous or homologous to human sexual 
desire.28–31 From both a biological and psychological per-
spective, this makes logical sense: animals must be able 
to respond to hormonal and neurochemical changes that 
signal their own sexual arousal and desire, and be able 
to interact with external sexual incentives. Animals must 
be able to identify external stimuli that predict where 
potential sex partners can be found and subsequently 
seek them out, solicit, court, or otherwise work to obtain 
them; distinguish sensory cues and behavioral patterns 
of potential partners from those that are not interested or 
receptive; and pursue desired sex partners once sexual 
contact has been made.

The Sexual Brain

The brain organizes sexual stimulation into an evo-
lutionarily conserved set of pathways or “modules” 
(e.g., Ref. 32; see below for lordosis) that reflect different 
levels of processing and interpretation33 (Figure 50.1). 
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These pathways integrate endogenous sex “drive” (e.g., 
gonadal hormone status and energy metabolism) with 
autonomic arousal in the hypothalamus, the intensity of 
incentive sexual stimuli (unconditioned and conditioned 
stimuli that activate or “prime” attention and movement 

from distal to proximal to interactive) in the hypothal-
amus and limbic system, and the evaluation of sexual 
context and executive function as it relates to sexual 
excitation or inhibition overall in the cortex. In particu-
lar, cortical activation controls the coding of information 

FIGURE 50.1 Interactive model depicting the regulation of sexual behavior by hormonal and associative learning (experiential) systems 
that subserve sexual arousal, desire, and behavior. Top: Excitation produced by hormone action and/or experientially derived activation of 
arousability (via activation of norepinephrine (NE) and oxytocin (OT)) and attention (via the activation of melanocortin (MC) and dopamine 
(DA)) that mixes with peripheral arousal and sexual stimuli to drive net behavioral output. Bottom: Inhibition from refractory states, stress, or 
aversion. Inhibitory systems activate serotonin (5-HT), opioids, and endocannabinoids (CBs) to induce satiety, pleasure, and sedation, respec-
tively, although such systems are activated in stressful or aversive circumstances. Source: Adapted from Pfaus and Scepkowski.33
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into “gestalts” (e.g., sets of physical or interpersonal 
characteristics that individuals find conditionally attrac-
tive or unattractive, contexts that are suitable or unsuit-
able for sexual activity, etc., following from Pavlov34) 
and involves the activation of medial prefrontal cortex 
(mPFC) and the descending inhibition of motor acts as 
part of executive function. Within each are excitatory 
and inhibitory neurochemical systems that control sex-
ual responding at any given time. These systems are 
activated or suppressed by steroid hormones, as well as 
by experience-driven changes in gene expression and 
neurochemical function.35 It is through these systems 
that priming stimuli or drugs alter sexual responding by 
changing the interpretation of stimuli and context.

Attentional and emotional components are encoded 
largely in limbic structures, notably in the nucleus 
accumbens (NAc), septum, and amygdala, which allow 
the animal to focus on pleasure- (or punishment-) related 
stimuli in the environment. The hippocampus provides 
spatial maps of the external world and episodic mem-
ory for important sexual encounters, and the paleocor-
tex (e.g., anterior cingulate gyrus) regulates autonomic 
function along with anticipation of reward, decision-
making, and empathy.36,37 Along with limbic activation, 
hypothalamic structures, notably the mPOA and VMH, 
activate sexual responding in relation to hormonal status 
and metabolism, and in concert with regions, such as the 
paraventricular nucleus (PVN) and supraoptic nucleus 
(SON), coordinate autonomic activation with elements 
of sexual desire (e.g., solicitations, pursuit). Those struc-
tures also participate in the generation of partner and 
mate preferences. The mPOA is well suited as a central 
processor in the linking of metabolic need, hormonal 
status, and autonomic outflow, with the stimulation of 
mesolimbic DA neurons in the ventral tegmental area 
(VTA). The mesolimbic DA system projects to several 
important limbic and cortical structures, notably the 
NAc, corticomedial amygdala, lateral and medial sep-
tum, and mPFC, and is critical for all animals’ attention 
to incentive stimuli.38 Thus, regulatory, attentional, and 
emotional systems are engaged at the same time follow-
ing the hormonal stimulation that occurs around ovu-
lation, linking reward-related incentive motivation to 
reproduction.

Finally, although sexual responses can include 
thoughts and fantasies (at least in humans), they are 
reflected in all animals as behavior. Coordinated pur-
poseful behavior comes from the activity of both fine 
and gross motor acts that are derived from the coor-
dinated activation of motor cortex and the basal gan-
glia, along with other motor structures in the midbrain 
and the cerebellum. In addition to coordinating body 
movements in space and time, these structures crystal-
lize motor memory, a function that is critical for motor 
habit formation (the phenomenon whereby motor acts 

at the beginning of behavioral learning are choppy and 
uncoordinated, but become virtually automated with 
practice). Although the formation of motor habits in 
males with extensive sexual experience protects sexual 
behavior against treatments or situations that might 
disrupt it, including novel environments, stress, genital 
anesthesia, brain lesions, and even castration or hypogo-
nadism (reviewed in Pfaus et al.28), it is not yet known 
whether sexual experience provides females with simi-
lar protection.

Structure of Female Sexual Behavior

For all animals, sexual behavior occurs as a sequence 
or “cascade” of behavioral events. Beach39 recognized the 
heuristic value of separating sexual behavior into appeti-
tive and consummatory phases. Essentially, this scheme 
followed from the work of early twentieth century ethol-
ogists and experimental psychologists,40,41 who defined 
appetitive (or “preparatory”) behaviors as those which 
bring an animal from distal to proximal and into con-
tact with goal objects or incentives, such as potential sex 
partners. In contrast, consummatory behaviors are per-
formed once an animal is in direct contact with the incen-
tive (i.e., to “consummate” the goal). Consummatory 
sexual behaviors tend to be species-specific, sexually dif-
ferentiated, and stereotyped, whereas appetitive behav-
iors are more flexible. This also makes sense as survival 
often depends on behavioral  flexibility—on an animal’s 
ability to learn a variety of strategies to obtain goals in 
different environments or appetitive circumstances.28,42 
As in animals, human sexual desire and subjective sexual 
arousal fit into an appetitive framework,28,31,43 whereas 
the more stereotyped patterns of copulatory behavior 
fit into a consummatory framework. Perhaps the most 
well-known description of human sexual response is 
that of Masters and  Johnson’s “EPOR” (Excitement-
Plateau-Orgasm- Resolution) model21 (Figure 50.2). This 
model flows in time as a  cascade of behavioral and neu-
rophysiological events, starting with sexual excitement 
(blood flow to the  genitals and other erogenous erectile 
tissues), then plateau (parasympathetic maintenance of 
genital blood flow during sexual intercourse), culminat-
ing in orgasm (a defining moment of euphoria, ecstasy, 
and pleasure in which sympathetic systems move blood 
out of the genitals), followed by resolution (also called 
a refractory period during which inhibitory systems of 
the brain are activated to reduce the salience of external 
and somatosensory sexual stimuli). The EPOR model 
describes at least three distinct patterns for women that 
vary in the structure of the plateau, the intensity and 
number of orgasms, and the temporal offset of arousal 
during the resolution phase, although it does not dif-
ferentiate the particular  characteristics of the sexual 
stimuli used to achieve orgasm (e.g., external clitoral 
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only, external and internal clitoral, cervical, blended cli-
toral and cervical, extragenital, etc.), nor was it based on 
an analysis of actual genital blood flow. Subsequently, 
Kaplan44 added a phase of sexual desire, consisting of 
fantasies and thoughts about sexual activity, along with 
behavior aimed at obtaining sexual partners and/or sex-
ual gratification.

Despite overarching theoretical models of human and 
animal sexual response that did not posit sex differences 
in the basic response structure, female sexual behavior 
has, until fairly recently, been considered “passive”. This 
is due in part to a general social construction in Western 
society of female sexuality as something that is “done to”, 
relative to more active male sexuality that “performs”, 

and to the labeling of female sexual behavior in both ani-
mals and humans as “receptive”, consisting largely in ani-
mals of estrogen- and progestin-dependent behaviors that 
allow females to accept male initiation (e.g., mounts) and 
be open to vaginal penetration by engaging in postural 
changes such as lordosis, the characteristic arching of the 
back that raises the rump to allow penile intromission. 
Similarly, in humans, hormone- and context-dependent 
“responsive desire” has been viewed as allowing females 
to be responsive to a partner’s active pursuits.47 However, 
it is clear that women and some other primate females 
can have sexual intercourse anytime during the ovula-
tory cycle. This can even occur without hormone prim-
ing in hypogonadal individuals and, indeed, without 

Masters and Johnson's (1966) EPOR model
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Modified by Kaplan (1974) and Georgiadis et al. (2012)
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FIGURE 50.2 Top: The EPOR model of human sexual response by Masters and Johnson.21 Bottom: Modifications of the model by Kaplan44 to 
include sexual desire before arousal, and further modifications by Georgiadis et al.45 to include theoretical phases of expectation, consummation, 
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prior desire or consent.48 Although sexually receptive 
behaviors clearly exist in females of all species, they are 
far from passive when it comes to sex. Based on obser-
vations of a variety of species, Beach39 proposed that 
female-initiated sexual behaviors can be partitioned into 
a cascade of essentially three temporal phases: attractivity 
(behaviors such as approach or scent marking that lure 
males to the females), proceptivity (behaviors that precede 
receptive behaviors and focus the male on pursuing the 
female), and receptivity (behaviors such as lordosis and 
lateral tail deflection in rats and hamsters, respectively, or 
leg spreading in the human) that allows the male to gain 
vaginal penetration. More recently, Basson47 (Figure 50.3) 
described how innate sexual desire (potentially induced 
at ovulation, for example by the combined action of estro-
gens and androgens in the hypothalamus and limbic sys-
tem) activates attention to incentive sexual stimuli, sexual 
arousal, and sexual receptive behaviors, that, if positively 
reinforced, lead to a sensitization of attention and sexual 
arousal in the presence of salient and competent incentive 
sexual cues. Her model is easily applicable to all species 
and is similar to incentive models for sexual motivation 
produced by others.2,43 Inherent in all models of sexual 
behavior is the notion that the components are separable. 
This would require different brain regions or networks to 
control the components, feedback systems that link them 
together, and molecular mechanisms that allow their acti-
vation to be altered by steroid hormones and experience.

Clearly, females and males engage in mutual and com-
plementary patterns of sexual activity; however, it is the 
females that initiate and control successful sexual inter-
action, including the initiation and temporal patterning 
of copulation. This occurs by a complex interaction of 
appetitive precopulatory behaviors that attract and solicit 
sex from males. These behaviors are taken to reflect 

sexual desire and may well be informed by or sum with 
sexual arousal. Once copulation begins, females engage 
in receptive behaviors such as lordosis, pacing behaviors that 
control the rate of sexual stimulation received during 
sexual interaction and copulation, and defensive behav-
iors used either to pace the copulatory contact if females 
cannot otherwise do so or to terminate the sexual inter-
action.2,49,50 These behaviors serve to optimize the rate 
and strength of sexual stimulation received by females, 
which in turn initiates neuroendocrine reflexes associ-
ated with fertility and pregnancy.51–53

Ovarian Hormones Set the Stage

The cyclic actions of estradiol, testosterone, and pro-
gesterone in females leads to changes in sexual respond-
ing and increases in sexual arousal and desire around 
the time of ovulation in all vertebrate species, including 
humans,54,55 although a smaller increase in arousal and 
desire has been reported around the time of menstrua-
tion.56 Of the major steroids released from the ovaries 
of mammalian females, estradiol and testosterone are at 
their highest level in the circulation around the time of 
ovulation (Figure 50.4). Progesterone levels rise before, 
during, and after ovulation, depending on the species. 
This hormonal milieu during the periovulatory follicular 
phase alters the way in which visual sexual stimuli are 
processed in women,58–61 which presumably leads to a 
shift in the incentive value of the stimuli. Analogous find-
ings have been reported in other primates, for example, 
in approaches and solicitations made around the time 
of the mid-cycle estradiol peak in rhesus macaques,57 
and in the appetitive and consummatory sexual behav-
iors that characterize the periovulatory period of female 
rats.31,32,39,49,50,62 Steroid hormones drive sexual arousal 

Numerous
incentives for 
sex

Basson's (2008) model of desire

Sexual
receptiveness

Sexual stimuli

Sexual
arousal

Responsive
desire

Rewards:
sexual and
nonsexual

Innate sexual
desire

FIGURE 50.3 Circular model of female sexual response by Basson.47
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and desire in response to competent incentive stimuli. In 
turn, experience with sexual reward (and inhibition) mod-
ulates the strength and trajectory of responses to incen-
tive sexual cues. This is timed in most female mammals to 
the period around ovulation, thus stimulating females to 
engage in the most rewarding behaviors under the most 
reproductively relevant circumstances (see below). This 
contrasts with the relatively stable and continuous testic-
ular androgen secretion in mammalian males (and its aro-
matization to neural estradiol in different regions of the 
brain) that maintains sexual arousability and responsive-
ness in a relatively continuous manner63 (see Chapter 49).

Animal Models of Female Sexual Behavior

Although human sexual behavior is best studied in 
humans, it is often impossible to do so with experimental 

precision or at a level that allows any degree of finely-
grained neural or molecular analysis. Recent advances 
in brain imaging and eye-tracking technology have 
allowed cortical and subcortical activation and visual 
gaze to be assessed in women viewing erotic visual 
stimuli, and some important paradigms have emerged 
to correlate aspects of subjective sexual arousal, desire, 
and orgasm to overall brain activation patterns.64 Such 
data reveal a great deal about the cognitive and limbic 
control of different aspects of female sexual behavior 
under different hormonally-modulated, pharmaco-
logical, or experiential conditions, and in ways that 
confirm data from females of other species. Neverthe-
less, these paradigms lag behind the scope of neuro-
anatomical, neuropharmacological, histochemical, 
and molecular methods that can be utilized in situ 
with animal models.
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Most of the research done on the neurobiology of female 
sexual behavior comes from rodent subfamilies, such as 
rats, mice, hamsters, gerbils, voles, and musk shrews, 
lagomorphs like rabbits and myomorphs like guinea pigs, 
less so from primates like rhesus and Japanese macaques, 
and even less so from humans. Understanding the behav-
ioral structure of each species’ appetitive and consum-
matory phases is vitally important for a sophisticated 
understanding of the neurobiological mechanisms that 
control it. In many studies the female’s receptive lordosis 
posture is taken as an index of her copulatory or “mat-
ing” behavior, rather than the full repertoire of appeti-
tive and consummatory sexual responses. It is often the 
case in laboratory settings that females are tested in small 
chambers that do not allow them to approach or escape 
the male or, in the case of females that pace the copula-
tory contact, allow them to regulate the timing and inten-
sity of that contact. When appetitive responses are taken 
together with lordosis, it becomes immediately apparent 
that there is extensive conservation of the neurochemi-
cal mechanisms that control sexual behavior which gen-
erates homologies in the way that sexual stimulation is 
perceived by the brain and induces competent responses. 
Behavior is the ultimate arbiter, and can never be sup-
planted by the processes that underlie it. For example, 
release of the neurotransmitter DA in mesolimbic termi-
nals like the NAc may be involved in all forms of appe-
titive motivation toward rewarding incentives like sex 
partners, but just observing DA released there does not 
allow the viewer to conclude that whatever the animal 
was doing is positively hedonic. Understanding the neu-
robiology of animal sexual behavior also allows the con-
sideration of models of sexual function and dysfunction 
that are directly applicable in the preclinical testing of 
drugs or other treatments.

Rats
Female rats are cyclic ovulators whose sexual behavior 

is timed to the periovulatory period. The ovulatory cycle 
last approximately 4–5 days, and as mentioned above, is 
split into phases that reflect the actions of ovarian hor-
mones on vaginal cell morphology and sexual behavior, 
including diestrus, metestrus, proestrus, and estrus. A 
rise in estradiol, during metestrus, followed by a peak 
in progesterone during the afternoon of proestrus, just 
prior to ovulation, primes the neural circuits necessary for 
sexual responding. As such, sexual behavior is expressed 
only during an approximate 12–20 h window, when she 
is fertile. As mentioned above, sexual behavior can be 
completely eliminated by bilateral OVX, but reinstated by 
priming with estradiol and progesterone (P) administered 
by subcutaneous injections, 48 and 4 h prior to testing, 
respectively,65 to mimic ovarian steroid secretion.

A typical copulatory bout in rats begins by anogenital 
investigation by either the female or the male, followed 

shortly thereafter by a solicitation made by the female. 
Solicitations begin with a head-wise orientation toward 
the male followed by a runaway of varying lengths, 
some of which are short and in the male’s vicinity and 
are typically referred to as “hops and darts”.30,31,49,50,66–71 
This behavior entices the male to chase the female. As the 
female comes to a stop, she initiates a present posture, 
facilitating the ability of the male to mount the female 
when he arrives. Flank stimulation during a mount elic-
its lordosis, the concave arching of the back that raises 
the rump and anogenital region, and is absolutely criti-
cal for vaginal penetration, or intromission, to occur. 
Male mounts are almost always accompanied by pelvic 
thrusts which make direct contact with the female’s clito-
ris. If the male has an erection, then the pelvic thrusts will 
push his penis into her vagina. Such vaginal intromis-
sions provide the female with stimulation of the vagina, 
including the internal clitoris and possibly also the cer-
vix. Immediately after a vaginal intromission the male 
dismounts and grooms his penis into detumescence. 
The female may run away again or stay in the male’s 
vicinity and hop over him to induce another mount with 
intromission. In this way, the female regulates or “paces” 
the rate of vaginal penetration, which controls the rate 
of vaginal, clitoral, and possibly cervical stimulation. 
After several mounts with intromission regulated by 
the female, the male ejaculates. Ejaculation consists of a 
deep penetration that is held in the vagina as the ejacu-
late congeals into a “vaginal plug” that surrounds the 
cervix and protects sperm transport. This also produces 
a large and sustained amount of cervical stimulation and 
is responded to by the female with a bursting dismount 
and runaway. After a few minutes of absolute then 
relative refractoriness and behavioral quiescence, the 
female shows increasing interest in the male and stays 
in his vicinity. This is responded to by the male with the 
resumption of mounts with intromission and a second 
ejaculatory series. Males typically have 7–10 ejaculatory 
series before becoming “sexually exhausted”.72,73 How-
ever, long before male exhaustion, females display a pro-
gressive reduction in solicitations and enforce increased 
time between intromissions either by running away or 
fighting. In the wild, more dominant females tend to re-
enter the burrow after only a few ejaculations, whereas 
more subordinate females take more ejaculations before 
they stop copulating. The progressive decline in solicita-
tions and increase in agonistic behavior is characteristic 
of “estrus termination”, an inhibitory state that signals a 
period of female refractoriness and the endocrine transi-
tion to pseudopregnancy or pregnancy.70,74,75

Female and male rats have also been used in studies of 
sexual reward, and to understand the plasticity of appe-
titive responses and their neurochemical control under 
different sexual circumstances, including different con-
texts, experiences, level of sexual reward, and partner 
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density.28,30,76–79 Indeed, rats will copulate in a variety 
of circumstances and testing chambers, including small 
cylindrical or square chambers,80 unilevel pacing cham-
bers,49,77,78,81–84 bilevel pacing chambers,70,75,85,86 and 
open fields31,50,87 (Figure 50.5).

Mice
There are well over 1100 naturally-occurring species 

of mice, with a far larger number of transgenic lines 
made with specific gene deletions or insertions. Those 
lines have been useful in identifying the role of estrogen, 
androgen, and progestin receptors using lines with spe-
cific KOs of those receptors or their subtypes, e.g., estro-
gen receptor alpha (ERα) and ER beta (ERβ), or steroid 
synthesizing enzymes, e.g., aromatase or 5α-reductase. 
The sexual behavior of wild house mice (Mus musculus) 

was documented by Estep, Lanier, and Dewsbury,87 
and consisted of a period of appetitive courtship that 
included mutual grooming of the body and genitals, 
sniffing of the genitals, and rooting (in which one part-
ner lifts up the body of the other with its head). Females 
were observed to orient away from the male prior to the 
males initiating mounts. Like hamster females, these wild 
mice hold lordosis for a long duration of male thrusts 
with intromission. Upon ejaculation, males typically fall 
over, pulling the females with them. Females then hold 
lordosis on their sides with the male’s penis still inside 
the vagina for approximately 20–30 s, after which the 
male dismounts, and the two groom their own genitals. 
Unlike the female rat, the female mouse stays in close 
proximity to the male during his postejaculatory inter-
val. Despite obvious differences in copulatory behavior 
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MFF open field

Full solicitations

Partial solicitations
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Touchback
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FIGURE 50.5 Rat copulation in several chambers. Top left: Bilevel pacing chambers. Bottom left: Unilevel pacing chambers. Bouts of copula-
tion are typically initiated by the female through solicitations. In bilevel chambers the female solicits as she would in the wild by making a head-
wise orientation to the male and then either darting or hopping away on the same or other level. This forces the male to chase her and females 
regulate the rate of copulation by running from level to level. The endpoint of each solicitation and runaway is lordosis, allowing the male to 
mount and gain vaginal intromission, after which the male dismounts and grooms his penis. This is repeated several times until the male ejacu-
lates. Unilevel pacing chambers are bisected by a Plexiglas or mesh partition with one or more holes cut out of the bottom that are big enough to 
allow the female to pass through but too small for the male. This restricts the male to one side. Females initiate copulatory contact by moving to 
the male’s side, and regulate the rate of contact by running from side to side. Top right: Open fields used for tests of conditioned sexual partner 
preference for one male choosing among two free-ranging females (MFF) or for one female choosing between two tethered males (FMM). Bottom 
right: Large open field used by McClintock50 to examine group mating patterns and preferences in female rats.
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between mice and rats, nearly identical pacing behav-
ior was observed recently in female mice.88 Females 
placed into a smaller version of a unilevel pacing cham-
ber bisected by Plexiglas dividers with four holes that 
only the females can pass through displayed exits and 
returns from the male’s side after bouts of intromissions. 
This indicates that mice pace the copulatory contact like 
rats do when given the opportunity. It is not yet known 
whether female mice find sexual stimulation in paced 
conditions rewarding.

Guinea Pigs
Guinea pigs were used extensively to understand the 

role of ovarian hormones in the elicitation of lordosis, 
and also to understand the functions of progesterone. 
Both females and males engage in a courtship dance 
prior to copulation in which the female approaches the 
male swinging her hips back and forth and making a 
vibrating sound often referred to as “purring”. Males 
respond in kind, and will often sniff and lick the anogen-
ital region of the female, who does the same. Males have 
been observed to purr and sway their hips at nonrecep-
tive females, but if the females do not respond sexually, 
then copulation is not attempted by the male.89 This is 
similar to sexually experienced male rats that investigate 
sexually nonreceptive females but do not attempt copu-
lation.90 Females in heat express lordosis in response to 
male flank palpation during mounting. Like rats, males 
have a multiple intromission pattern prior to ejaculation 
and, as in rat pacing behavior, females run away from 
the males between intromissions causing the males to 
chase them. As the period of estrus terminates, females 
display more and more aggressive rejection responses to 
male pursuits and mounts.

Hamsters and Gerbils
The copulatory behavior of these subfamilies have 

been studied in less detail than that of rats, and mostly 
for effects of hormones, drugs, or brain region lesions 
on lordosis,91 but also to examine social conditions like 
group size on sexual receptivity,92 and sexual recogni-
tion.93 Like rats, hamsters become sexually receptive 
every 4 days during their ovulatory phase, but are much 
more consistent than rats in their estrous cycles. Ger-
bils are sexually receptive approximately every 6 days. 
Female hamsters and gerbils both display appetitive 
responses that attract and solicit males to chase them. 
Female gerbils, for example, display a rhythmic “thump-
ing” of the hindlegs that attracts males to them (males 
display similar behaviors with other males, although 
typically in response to a threat). Females of both spe-
cies also display lordosis upon somatosensory stimula-
tion of the flanks and perineum by males. Although both 
species are seasonal breeders in the wild, sexual behav-
ior can be induced at regular intervals by injections of 

estradiol and progesterone, as in the rat. True receptivity 
to intromissions in the hamster, however, is not assessed 
by lordosis alone. Female hamsters display the lordosis 
posture and remain in it while the male mounts, intro-
mits, and dismounts several times. To allow vaginal 
penetration, the females’ tails must deflect laterally or 
dorsally, making “tail displacements” the true measure of 
receptivity to vaginal penetration.94 In addition, female 
hamsters do not run away from males, or if they do it is 
for a very short distance and still while in a semi-lordosis 
posture, so there is little chasing behavior. Males simply 
mount and intromit repeatedly until ejaculation. Like 
rats, female hamsters will attack males that attempt to 
mount them when they are not sexually receptive, when 
the period of sexual receptivity is terminating, and when 
they are OVX and primed with low doses of estradiol, 
with or without progesterone. Female gerbils engage in 
appetitive thumping, causing males to thump back, as 
the rhythmic leg thumps are a form of social communi-
cation. This typically occurs prior to the female present-
ing to the male, which is followed by the male mounting. 
Estrus termination in both species is induced by vagi-
nocervical stimulation (VCS) and accompanied by an 
increase in female fighting if males persist in attempting 
to mount. It is more typical, however, for females to take 
themselves out of the situation by moving to a different 
space or into a burrow system.

Voles
Voles have been studied largely to understand the 

neurochemical and genetic basis of “monogamous” vs 
“promiscuous” sexual partner and mate preferences. 
Both female and male prairie voles show social and 
sexual partner preferences for their first sexual partner, 
relative to an unfamiliar partner, and they form rela-
tively stable pair bonds for the nurturing of their pups. 
In contrast, closely related meadow voles do not display 
such preferences. However, prairie voles are not sexually 
exclusive and will copulate with other partners under 
certain circumstances. Differences in mating strategy 
have been linked to the differential actions of oxytocin 
(OT) in females and vasopressin in males,95 in particular 
in males to the greater expression of the vasopressin 1a 
(V1a) receptor in the ventral pallidum, a motor  structure 
that receives input from the NAc. DA is also important 
in driving the partner preference in the presence of 
 familiar—and presumably olfactory—incentive cues.96

Female voles make precopulatory scent marks when 
they are sexually receptive, and they will spend more time 
near male scent marks. Females also approach males and 
both engage in side-by-side contact, sometimes referred to 
as cuddling. Males mount females who display lordosis, 
and although males appear to set the pace, females copu-
late with tethered males, suggesting that females can initi-
ate copulation. Vole mating in the wild takes place over 
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several days, during which males ejaculate several times 
with either one (monogamous) or several (polygamous) 
females. Like rats, male voles display a multiple intromis-
sion pattern prior to ejaculation, suggesting that females 
receive clitoral stimulation (CLS) and VCS at a particular 
rate. It is not known which stimuli are responsible for ter-
minating sexual receptivity in the vole.

Musk Shrews
Musk shrews are a primitive eutherian mammal. 

Female shrews are induced or reflex ovulators that 
require behavioral stimulation to ovulate and induce 
increases in circulating estradiol and progesterone. The 
torturous process of a male “taming” a female shrew 
into sexual receptivity has been known for a very long 
time. Indeed, Shakespeare’s 1592 play of the same name 
is a comic analogy about human heterosexual marriage. 
Rissman and colleagues studied the copulatory behav-
ior of musk shrews extensively in order to make com-
parative analyses of hormone-brain interactions. Their 
work established clearly that female musk shrews dis-
play a period of intense appetitive aggression toward 
males which includes biting and scratching, and if the 
females live in large natal groups, the aggression against 
potential suitor males sometimes results in death.97 Vir-
gin females attack males more frequently than sexually 
experienced females, and exposure to male olfactory 
cues reduce aggression in virgin females.98 The most per-
sistent male will eventually gain access to her flanks and 
mount, which induces tail-wagging, a first sign of sexual 
interest, followed by a lordosis posture thus rendering 
her sexually receptive to his intromissions. Testosterone 
produced by the ovaries and adrenal glands is the most 
abundant circulating steroid at the time the males begin 
their approach,99 and may explain the increased female 
aggression during this appetitive period. Indeed, crys-
talline implants of testosterone in the mPOA or VMH of 
OVX shrews were more likely to induce a full comple-
ment of sexual behaviors compared to implants to the 
bed nucleus of the stria terminalis (BNST), whereas 
implants of estradiol in the mPOA or VMH induced 
lordosis and immobility, and reduced the time taken 
for females to become receptive. This suggests that aro-
matization of circulating testosterone into estradiol is 
necessary for the switching from aggression to sexual 
receptivity. High levels of cortisol are also observed dur-
ing the induction of sexual receptivity, and blocking cor-
tisol production reduces sexual receptivity.100 As with 
rats, extended periods of sexual receptivity also facilitate 
the induction of pregnancy.98 It is not known what type 
of sexual stimulation may contribute to this.

Rabbits
As with rats and guinea pigs, rabbits have been used 

to examine a host of female reproductive functions, from 

hormone and brain lesion effects on sexual behavior 
and scent marking to sexually dimorphic development 
of the olfactory system (e.g., Refs 101,102). Female rab-
bits typically approach males and stay motionless beside 
them. The two gradually rub noses and nibble at each 
other’s fur. If receptive females are eating when a male 
approaches, he may rush past them and then gradually 
get closer, often circling stiff-legged with his rump and 
tail raised high in the air. If the female ignores the male’s 
advances, he often scent marks her with urine. Once the 
male mounts and intromits, he typically bites the back 
of the female’s neck. After a few thrusts he ejaculates, 
and like the rat often falls off the side of the female and 
remains motionless for a while. As the male approaches 
exhaustion and the female approaches estrus termina-
tion, the two start nibbling more and more at a food 
source.

Macaques and Other Nonhuman Primates
Rhesus macaques have been used in a variety of 

ways in sex and neuroendocrine research, notably like 
rats in the study of hormonal and neurochemical sys-
tems underlying appetitive and consummatory sexual 
behavior, but also to study the social conditions under 
which very different types of sexual responding are 
induced. Female rhesus macaques living in large natal 
groups approach males early in their appetitive phase, 
several days before their estradiol peak, followed by 
solicitations of males more closely linked to the estra-
diol peak.57,103 Solicitations or “invitations” include 
characteristic “hand reach”, “head-duck”, and “head-
bob” behaviors in the vicinity of the male.104 Females 
also assume a lordosis posture when mounted, and 
males typically mount with a number of intromissions 
and pelvic thrusts, sometimes occurring in bouts prior 
to ejaculation. Females display a characteristic clutch-
ing reaction after ejaculation in which the female reaches 
back and clutches the face of the male.105 These behaviors 
cease soon after copulation terminates, as plasma estra-
diol levels decrease. Like rats and dogs, female rhesus 
macaques also mount sexually inactive or naïve males 
as a supersolicitational behavior to induce the males 
to mount back.106 In contrast to females living in large 
groups, single female rhesus macaques living in dyadic 
conditions with one male show a far greater propensity 
to submit to mounts on the part of the male through-
out the ovulatory cycle, although there is an increase in 
successful mounts by the male around the time of the 
estradiol peak.103 Thus, a dyadic context in which the 
female is always in the vicinity of the male and cannot 
escape stimulates more mounting behavior on the part 
of the male, which is reacted to by consummatory sexual 
behavior on the part of the female throughout her ovula-
tory cycle, although the number of male ejaculations still 
increases during ovulation. This suggests that contextual 
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cues and sexual stimulation interact with neuroendo-
crine systems to stimulate sexual responding in female 
rhesus macaques that appears to be less tightly-linked 
to ovulation, a situation generally not found in rats and 
mice. In laboratory settings, female rhesus macaques can 
also be trained to bar-press to obtain a male, behavior 
that increases during their ovulatory phase.107

Female Japanese macaques, and to a lesser extent 
Stump-tail macaques, engage in homosexual mounting 
of other receptive females, often to the point of display-
ing ejaculation—like facial grimaces prior to dismount-
ing and a period of rest,108 suggesting that female–female 
mounting leads to genital stimulation that induces an 
ejaculation-like state in the female. Female Japanese 
macaques form stable homosexual consortships during 
the breeding season109–112 that is not due to, nor affected 
by, the availability of males. Females mount one another 
repeatedly, and males entering into this consortship 
engage in intrasexual competition, often trying to fight 
the dominant (mounting) female to gain access to the 
other female, who typically rejects him over 90% of the 
time.109 Female bonobos also engage in female–female 
mounting, usually as a method of conflict resolution 
when males are fighting.113,114 Notably this behavior can 
occur at anytime during the ovulatory cycle. Although 
the patterns of female approach and solicitation are 
similar in many primate species, the copulatory stance 
of the Bonobos includes face-to-face, male-on-top “mis-
sionary” positions not observed in other primates except 
humans.

Humans
Like other primates, the sexual behavior, and espe-

cially sexual arousal, desire, orgasm, and sexual inhi-
bition of the human female are exquisitely sensitive to 
context and social learning.47 However, despite the gen-
eral view that sexual behavior in women is “freed” from 
the dependence on steroid hormones, women display a 
characteristic increase in self-reported sexual desire and 
arousal during ovulation.55 Across the ovarian cycle of 
women, steroid hormone levels fluctuate in a cyclical 
manner. Circulating levels of estradiol, progesterone, 
and testosterone rise around the time of ovulation, cor-
relating with an increase in sexual interest, activity and 
fantasies.55,115–118 Removal of cyclic steroid hormone 
release by long-term administration of estrogen-con-
taining oral contraceptives often results in a decline in 
sexual desire, activity, and genital blood flow.115,119,120 
It is unclear whether the blunting of the cyclical induc-
tion of sexual activity and fantasies is directly due to the 
removal of the cyclicity of the hormones acting on rel-
evant tissues, or whether it is secondary to downstream 
effects of chronic administration of estrogens. Long-term 
exposure to estrogens has a number of physiological 
effects that might disrupt sexual behavior. For example, 

estrogens upregulate steroid hormone binding globulin 
(SHBG) production by the liver, which are transport pro-
teins that bind androgens with higher affinity than estro-
gens.121,122 A recent study on premenopausal women’s 
steroid hormone levels using liquid chromatography-
tandem mass spectrometry revealed that serum testos-
terone, free testosterone, estradiol, estrone, and SHBG 
levels peaked at midcycle and remained higher in the 
mid-luteal phase, whereas the 5-α reduced androgen 
metabolite dihydrotestosterone (DHT) did not change 
across the cycle.123 Chronic use of oral contraceptives 
containing combined estrogens and progestins lowers 
free testosterone levels and upregulates SHBGs.124 Given 
the importance of free testosterone for sexual desire in 
women,125 its reduction by chronic oral contraceptive 
use may be one reason why some women experience a 
decrease in sexual desire on the pill.

A decline in sexual desire and activity also occurs 
following surgical and natural menopause. Surgically 
menopausal women, induced either by bilateral oopho-
rectomy and hysterectomy, experience a sudden and 
drastic decline in sexual arousal and desire.126–129 These 
symptoms can be restored following adequate hormone 
replacement regimens, particularly with replacement of 
estrogens in combination with testosterone.126,127,130–139 
As such, ample evidence suggests that fluctuating ovar-
ian steroid hormone levels are important in normal sex-
ual function in women, as they are in other species.

Sexual desire in women is a matter of great contro-
versy. Although sexual arousal and desire can be defined 
by subjective reports, only arousal has been defined 
objectively (as increased genital blood flow). There is 
not yet an objective measure of desire, thereby forcing 
it to be inferred from subjective self-report or intuitively 
observed behavior (e.g., flirtations). Desire appears to 
occur spontaneously in some women whereas in others it 
occurs in response to the right male(s) or females(s) mak-
ing the right verbal and nonverbal gestures in the right 
contexts. As mentioned above, self-reported desire peaks 
during ovulation. This makes antecedent hormonal con-
ditions—effects of estradiol, testosterone, and perhaps 
also progesterone, in the brain—likely motivational vari-
ables in its stimulation. Responsive desire, or the ability 
of the “right” stimuli to activate incentive motivational 
pathways in the brain and excite attention and behaviors 
that are indicative of desire, is also activated by steroid 
hormones. Desire is then expressed both as a sponta-
neous motivation and an attention toward competent 
sexual stimuli.2,43 In both cases, the emergent conscious 
awareness of sexual desire activates movement from 
distal to proximal to interactive, like the approach and 
solicitations of rats and macaques. Humans thus learn 
a baffling array of appetitive responses that work dif-
ferently in different cultures and contexts, or differently 
within a single culture at different epochs, and indeed 
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differently with different people. And cultures constrain 
women’s responses, and indeed their own knowledge of 
their own sexuality, to appropriate times and places. The 
brain must balance these excitatory and inhibitory influ-
ences to achieve some kind of optimal level for pleasure. 
And it must do this with hormonal influences weighing 
it toward excitation, especially during ovulation, and 
experience directing attention and behavior toward indi-
viduals and stimuli previously associated with sexual 
reward.

The copulatory patterns of women are also fraught 
with problems of interpretation. Although more behav-
iorally stereotyped than appetitive responses, consum-
matory patterns of copulation in humans are nonetheless 
extremely variable, even in cultures where certain posi-
tions (e.g., missionary) are proscribed.10,20,140 Some het-
erosexual positions, e.g., woman on top, can maximize 
her ability to get optimal external and internal CLS, pos-
sibly along with direct stimulation of the cervix, from 
the male.141 Other positions may embellish other stimu-
lus zones, and thus engage different motor patterns to 
maximize the stimulation achieved. And of course, some 
women are extremely sensitive to external CLS, and can 
only achieve orgasm in that way, whereas others achieve 
orgasms with blended internal and external CLS.142–146 
Interestingly, there is no human analogue to the lordosis 
reflex, although lordosis-like positions can be observed 
in women being mounted from behind. The arching of 
the back, however, is not a hormone-induced and/or 
facilitated spinal reflex; those do not exist in humans, a 
fact that continues to limit the human clinical applica-
tion of the neuroendocrine work done on lordosis in ani-
mals. Being “receptive” to vaginal penetration in women 
involves a conscious decision to expose the vulva and 
open it to penetration. Experience with orgasm or other 
types of sexual pleasure and intimacy leads to expectan-
cies which also constrain the sexual positions and pat-
terns of both men and women.145

ANATOMY AND PHYSIOLOGY OF 
SEXUAL SENSORY SYSTEMS

The autonomic and peripheral nervous systems work 
together to send sensory information about genital and 
erogenous sexual arousal and stimulation to the spinal 
cord and brain, from which conscious feelings of desire 
and pleasure are derived (Figure 50.6). Genital (clitoral 
and cervical, but also involving sensitive regions of the 
labia and anus), and erogenous (nipples, lips) stimula-
tion typically requires the engorgement of erectile tissues 
with blood (a parasympathetic activation). This engorge-
ment increases the somatosensory surface area upon 
which stimulation can induce a response, essentially 
making the female more sensitive to tactile stimulation. 

Copulation typically involves more focused and local-
ized genital stimulation that culminates in the buildup 
of a threshold amount of sympathetic arousal that brings 
about orgasm (or homologous responses in animals), 
and immediate sexual pleasure that activates inhibitory 
mechanisms related to euphoria (e.g., orgasm/reward), 
satiety and refractoriness.

Autonomic Control

The autonomic nervous system147,148 consists of three 
divisions, sympathetic, parasympathetic, and enteric 
(the latter of which controls the gut). The role of the sym-
pathetic system is to up- or down-regulate homeostatic 
and cardiovascular mechanisms to prepare the body for 
action (sometimes referred to as “the stress response” 
or the “fight or flight response”). Such action can be 
defined in terms of good stress (“eustress”) or bad stress 
(“ distress”) depending on the nature of the event.149 In 
either case, the sympathetic system initiates immediate 
pupil dilation (allowing for greater processing of the 
visual field), increased heart rate and blood pressure, 
dilation of the bronchioles of the lungs (to increase oxy-
genation of the blood), constriction of blood vessels, and 
inhibited digestion. It also is responsible for orgasm once 
sexual stimulation is underway. The sympathetic system 
activates the adrenal gland (located just above the kid-
ney) to induce a massive release of adrenaline from the 
adrenal medulla (which activates and potentiates sym-
pathetic outflow in most organs all at once, except the 
gonads). Adrenocorticotropic hormone (ACTH) released 
from the anterior pituitary stimulates the secretion of 
glucocorticoids such as corticosterone or cortisol from 
the adrenal cortex (which increases glucose concentra-
tions in the blood, inhibits inflammation that might 
occur in response to injury, and potentiates arousal in 
the central nervous system and phenomena like place 
learning in the hippocampus of the brain’s limbic sys-
tem). The sympathetic nervous system extends from the 
spinal cord between the thoracic and lumbar divisions, 
and consists of short preganglionic nerves that contain 
the neurotransmitter Ach which excites postganglionic 
neurons, and long postganglionic nerves that contain 
norepinephrine (which inhibits prolonged muscle con-
tractions). The ganglia collect incoming preganglionic 
fibers and distribute the postganglionic fibers to the 
organs in the abdominal and pelvic regions.

In contrast, the parasympathetic nervous system 
opposes the actions of the sympathetic system at each 
organ within each division. Its role is to calm the system 
down after stress, although it can be activated within 
each division on its own (e.g., as bright sunlight induces 
constriction of the pupil). The parasympathetic division 
is literally around (“para”) the sympathetic division, and 
extends long fibers of the cranial nerves III, VII, IX, and 
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X (occulomotor, facial, glossopharyngeal, and vagus) to 
innervate ganglia close to the organs. The postganglionic 
fibers that innervate the organs are short. Both pre- and 
postganglionic fibers contain Ach, which excites neurons 
and contracts smooth muscle. The pre-to-post relation-
ship is more specific (e.g., 1:3) compared to the sympa-
thetic division (which is greater than 1:10). Because the 
parasympathetic division causes dilation of blood ves-
sels, it is critical for the stimulation of erection in labia, 
clitoris, and the vaginal epithelium, along with other 
erogenous erectile tissues (e.g., nipples and lips), and for 
draining the blood out of erectile tissues after orgasm.

Physiological sexual arousal can be defined as 
increased autonomic activation that prepares the body 
for sexual activity. In females this includes activation of 
the parasympathetic system that keeps blood in genital 
and erectile tissues, in particular the clitoris, labia, vaginal 
epithelium, nipples, and lips, and sympathetic blood flow 
from the heart to striated and smooth muscle that partici-
pate in sexual responses (Figure 50.7). Sexual arousal also 
includes a central component that increases neural “tone” 

or preparedness to respond to sexual incentives, and 
forms around an intricate interaction of hormone prim-
ing and noradrenergic activity in different regions of the 
brain. Both peripheral and central arousal may be detected 
as part of the perception of subjective sexual arousal, and 
both clearly lead to changes in responsiveness in genital 
tissues and control certain copulatory responses, such as 
the latency to orgasm (with shorter latencies indicating an 
increase in arousal). Both aspects are sensitized by estra-
diol and testosterone,150 and are thus more likely to be 
experienced during the periovulatory period.

Peripheral autonomic blood flow is typically experi-
enced far more readily than internal flow. Thus, women 
are less likely to be consciously aware of blood flow to 
the labia and clitoris relative to blood flow to the nipples. 
The reliance on vaginal arousal as a measure of sexual 
arousal may well account for the relative lack of concor-
dance between physiological and subjective measures 
of sexual arousal in women relative to the concordance 
observed between physiological and subjective mea-
sures of sexual arousal in men.151
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Genitosensory Stimulation

Both psychogenic and physical stimulation induce 
sexual arousal and desire that can lead to sexual behav-
ior. Under normal conditions peripheral genital stimula-
tion enhances excitability within sensory afferents that 
innervate spinal cord neural circuits. These spinal path-
ways contain the neural components for reflexive vaso-
dilatation and orgasm and receive and send information 
to brain regions that perceive and modulate the signals 
that drive or inhibit sexual behavior. Although there 
are important differences in the brain and spinal path-
ways that mediate sexual function in males and females, 
largely related to sexual differentiation due to gonadal 
steroid hormone actions during fetal development (See 
Chapter 47), there is also substantial similarity between 
the CNS mechanisms mediating sexual desire, arousal 
and orgasm in males and females. In females, these 
include mechanisms involved in genital and psycho-
logical arousal, vasodilatation in the clitoris and vagina, 
smooth and skeletal muscle contractions, and rewarding 
sensations including orgasm.

Clitoral Stimulation
The clitoris is the main genitosensory organ of sexual 

pleasure in females,130,132,134 and CLS influences vagi-
nal muscle function.152 It has been studied in rats with 
regard to its innervation and vasculature during sexual 
arousal153–156 and its morphology in response to hor-
mones.157–159 However, its role in carrying sensory infor-
mation during sexual activity in female rats has only 
recently been eludicated.160–163 By engaging in lordosis, 
female rats not only receive vaginal intromission, but also 
CLS during mounts with pelvic thrusting. This interaction 
stimulates the female’s flanks, rump, tailbase, perineum, 
and perivaginal surfaces which include the clitoris.164 
Intromission also stimulates the internal end of the clito-
ris in a region that overlaps in humans with the so-called 
“G-spot”.165–167

In addition to CLS induced by male pelvic thrusting, 
direct CLS can be applied by an experimenter that mimics 
the distributed CLS a female rat might receive during cop-
ulation160–163 (Figure 50.8, bottom left). Such stimulation 
on its own is rewarding in sexually naïve rats and stimu-
lates preference for places and scents on partners asso-
ciated with the reward state (see Section Consequences 
of Sexual Stimulation below). In contrast, CLS does 
not induce a preference in sexually experienced rats,162 
although it stimulates approach and solicitations of males 
behind a wire mesh screen.161 Interestingly, the reward 
value of CLS is independent of steroid hormone priming, 
working as well in OVX rats as it does in OVX rats primed 
with estradiol alone or estradiol and progesterone.162

Clitoral afferents travel largely via the pudendal nerve 
(which branches into the dorsal penile nerve in males 

and dorsal clitoral nerve in females). This nerve provides 
the major sensory input from the external and internal 
clitoris and vagina, and provides the efferent (motor) 
innervations of the striated muscles of the pelvic floor 
and perineum.170–172 Stimulation of the sensory branch 
of the pudendal nerve elicits vasodilation of the clitoris 
and vagina.158,172–175 The increase in vaginal blood flow 
in response to sensory pudendal nerve stimulation was 
reduced by bilateral pelvic nerve cuts, suggesting that 
somatic afferents activate automatic spinal pathways 
to mediate the changes in vaginal blood flow that lead 
to vasocongestion.174 The sensory field of the pudendal 
nerve is augmented by treatment with estradiol in OVX 
rats.176

Cervical Stimulation
The cervix is also stimulated during sexual interaction. 

Female rats, for example may receive VCS directly with 
each intromissive pelvic thrust from the male, whereas 
in humans the penis is generally not long enough to do 
this in most male-above positions, although it can occur 
in female-on-top positions.177 Notably, however, orgasm 
in women also induces contractions of the cervix as part 
of what has been referred to as the “up-suck” reflex that 
aids sperm transport into the uterus.178

In rats small amounts of VCS potentiate lordosis 
whereas large amounts stimulate the termination of 
estrus. This stimulation-dependent excitation or inhibi-
tion depends on the hormonal status of the female and 
whether she can pace the copulatory contact with the 
male, as pacing increases the force with which the male 
intromits.179–181 The augmentation of lordosis by small 
amounts of VCS is thought to be mediated at least in part, 
by the release of norepinephrine and possibly DA in the 
hypothalamus.182,183 It may also be mediated by the release 
of OT in the spinal cord,184 an effect that could also induce 
cervical dilation in preparation for sperm transport.

VCS can be applied by the experimenter using a 
smooth glass rod (Figure 50.8 bottom center) or plastic 
1 cc syringe that approximates the width of the erect male 
rat penis. This stimulation can partially mimic the effects 
of intromissions by a male rat on reproductive physiol-
ogy and behavior. This is somewhat surprising, however, 
because the probes provide pressure directly to the uter-
ine cervix with mild distension pressure on the vaginal 
wall, whereas the erect rat penis is covered with kerati-
nous spines,185,186 which may more potently stimulate the 
vaginal wall even if the glans of the penis does not actually 
make contact with the cervix during intromission. Never-
theless, experimenter-administered VCS has many of the 
same effects on behavior and physiology as intromissions 
and is often used as a tool to simulate in a controlled man-
ner the intromissions by the male. For example, experi-
menter-applied VCS increases heart rate187 and elevates 
pain thresholds in both rats188 and women.189 VCS also 
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potentiates the ability of flank stimulation to induce lor-
dosis in OVX rats not given hormone replacement,190 and 
represents the only known stimulus, other than estradiol, 
to permit flank stimulation to induce lordosis.

Study of the relative contribution of intromissive, as 
compared to flank and perineal, stimulation provided by 
males suggested that nonintromissive stimulation is suf-
ficient for mating-enhancement of lordosis, ear-wiggling 
and darting-and hopping in OVX/adrenalectomized 
(ADX) rats in a repetitive mating situation.179 Therefore, 
VCS is not the proximate cause of mating enhancement in 
the repetitive mating situation, because, mounts without 
intromission were sufficient to enhance lordosis in OVX/
ADX, estradiol-treated rats in the absence of progester-
one. This makes logical sense; enhancement precedes the 
receipt of intromissions, because intromissions require 
that females display lordosis in response to mounts. Of 
course, the female does not show this posture until she is 
sexually receptive. In some experiments, rats have been 

OVX, and in others, they have also been ADX. Therefore, 
the interactions between adrenal ovarian hormones in the 
regulation of sexual responsiveness182 and in the neuro-
nal response to mating stimulation191 must be considered. 
In some neuroanatomical areas, for example, OVX/ADX 
rats express the immediate early protein, Fos, in fewer 
cells in response to mounts without intromission than do 
OVX rats, but they express Fos in more cells in response 
to intromissions. This finding suggests that adrenal 
secretions may decrease sensitivity to low levels of mat-
ing stimulation.191 Besides its influences on behavior, 
VCS influences luteinizing hormone (LH) release192 and 
the twice daily surges of prolactin that then result in an 
extended period of diestrus193 called pseudopregnancy or 
the progestational state.194 More will be explained about 
the influences of VCS on estrus termination below. Cervi-
cal afferents travel largely via the pelvic nerve, and abla-
tion of the pelvic nerve abolishes Fos induction in the 
brain by both VCS and copulation.195

CLS VCS COP

mPOA

VMH

Stimulus

FIGURE 50.8 Fos induction in the mPOA (top) and VMH (middle) of OVX hormone-primed rats that received 50 distributed CLSs applied 
with a paintbrush,160–163 50 distributed VCSs applied with a lubricated glass rod,75,168,169 or an hour’s worth of paced copulation in bilevel cham-
bers (bottom).
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Clitoral and Cervical Overlap
Both pelvic and hypogastric nerves convey sensory 

and noxious information from the internal reproduc-
tive organs, vagina and skin.196 The cavernous nerve 
regulates both penile and clitoral erections. Stimulation 
of pelvic nerve afferents evokes an increase in vaginal 
blood flow, modeling genital arousal.158 Vagal afferents 
from the uterus and cervix provide direct connections to 
the brainstem, and may sense orgasmic responses after 
spinal cord injury.197 The distribution of the sensory affer-
ents in the pelvis allows them to transmit considerable 
information relevant to mating, such as initiation and 
strength of sexual arousal, the location and movement 
of the penis inside the vagina, and orgasm or other plea-
surable sensations derived from CLS. The clitoral glans 
contains specialized nerve endings that become very 
sensitive during erection and likely enhance sensation 
during intercourse, as is the case of the glans penis.198,199

Spinal Pathways

The sympathetic, parasympathetic, and somatic 
branches of the nervous system are coordinated and 
interconnected through important spinal pathways. 
This coordination allows sensory inputs to produce the 
appropriate sexual response, e.g., vasodilatation of erec-
tile tissue, lubrication, increased sensitivity of erogenous 
zones, and muscle contractions during intromission and 
orgasm. In females the sympathetic spinal regions in 
lower thoracic-lumbar segments play a role in psycho-
genic arousal that occurs when distal cues (e.g., erotic 
visual cues in women; olfactory cues in rats) induce vag-
inal congestion.200,201 However, genital responses occur 
only if the lumbosacral spinal cord that contains the pel-
vic and pudendal afferents and efferents is intact. Brain-
stem nuclei in the nucleus paragigantocellularis exert a 
serotonin-mediated tonic inhibition over the spinal path-
ways, and different regions of the brain (cortex, limbic 
system, mPOA) can be activated (directly or through 
visual or olfactory sexual stimulation) to initiate genital 
responses (reviewed in Ref. 196).

The pudendal nerve and pelvic nerve afferents course 
along the medial and lateral dorsal horn, respectively, 
of L5-S1 of the rat, with some afferent fibers penetrat-
ing into the dorsal gray commissure, and toward the 
parasympathetic preganglionic nucleus. In contrast, 
the hypogastric nerve afferents of the rat are relatively 
sparse and terminate in the superficial dorsal horn and 
medial gray of T13-L3.171,195

Fos Induction
Copulation, artificial VCS or CLS, urethral stimulation, 

or electrical stimulation of pudendal or pelvic nerves, all 
activate the immediate-early gene product Fos in neurons 
in similar spinal segments and subregions.175,202 Activated 

spinal neurons are located in the superficial dorsal horn, 
the dorsal gray commissure of L5-S1 segments, over-
lapping with pelvic and pudendal sensory nerve inner-
vations. Additional spinal neurons are activated in the 
intermediate gray and lateral gray dorsal to the parasym-
pathetic preganglionic neurons. The distribution of acti-
vated spinal interneurons is similar in males and females. 
In parallel, electrophysiological studies identified similar 
spinal interneurons in the medial lumbosacral spinal gray 
matter after stimulation of the pudendal nerve and pelvic 
viscera.203,204 However, VCS and CLS produce a different 
pattern of Fos activation in the rat brain (Figure 50.8, top). 
For example, distributed CLS that females find reward-
ing activates the medial nucleus of the mPOA,160 whereas 
VCS activates a more medial region near the ventricles of 
the mPOA.168,169 Paced copulation with a male ( Figure 
50.8, bottom right) activates both. In the VMH, CLS 
activates Fos throughout the dorsal and medial region, 
whereas VCS activates Fos exclusively in the ventrolateral 
region. Similarly, CLS activates Fos in limbic structures 
such as the posteroventral region of the medial amygdala 
(MEApv), whereas VCS activates Fos in the posteriordor-
sal region of the MEA.18,160 In women, fMRI studies show 
that clitoral, vaginal, or cervical self-stimulation activates 
different regions of the sensory cortex.205 Each of these 
are clustered in the medial paracentral lobe, a region that 
registers stimulation of the penis in the classic sensory 
homunculus of men.206

Tract Tracing
Neuroanatomical tract-tracing studies using neu-

rotrophic viruses that are transported transneuronally 
through several synapses (for example, pseudorabies 
virus) have been used to map spinal and brain neurons 
that innervate the perineal muscles, clitoris, vagina, and 
uterus.171,207–210 The majority of labeled neurons in the 
spinal cord are located in the dorsal gray commissure 
and in the vicinity sympathetic and parasympathetic 
preganglionic neurons, in the same regions as the Fos 
activated neurons. These neuroanatomical and electro-
physiological studies reveal that genital afferents syn-
apse on multiple interneurons in the spinal cord which 
then relay through a spinal pattern generator the pregan-
glionic and postganglionic neurons and motoneurons to 
mediate, enhance, trigger, and maintain genital sexual 
responses. This complex spinal system allows coordina-
tion of sexual reflexes and sensorimotor modulation of 
these responses by different hypothalamic, midbrain, 
and brainstem regions (Figure 50.9).

Ultrastructural Changes in the Brain by Copulatory 
Stimulation

Sexual behavior itself influences neuronal morphology 
in rats211 and hamsters.94 After 1 h of mating in rats, there 
is a dramatic increase in expression of the cytoskeletal 
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protein, Arc, in the ventrolateral VMH. Surprisingly, 
although the short-term effects were not assessed, this 
treatment also leads to a reduction 5 days later in second-
ary dendrites in this area. In hamsters, sexual experience 
increases the density of dendritic spines (membranous 
protuberences from the dendrite that typically receive 
a single synaptic input) in the prefrontal cortex (PFC), 
while decreasing it in the NAc.94 Corresponding neuro-
chemical changes have also been reported as a function 
of copulatory experience, including sensitization of D1 
DA receptors212 and Fos expression213 in the NAc. It is 
clear that environmental stimulation, including that from 
mating, causes structural changes in neuroanatomical 
areas involved in sexual behavior. It is currently unclear 
how these changes relate to behavioral responses.

Other Erogenous Zones

Nipple and lip stimulation can be highly erotic during 
sexual arousal in both men and women, and can stimu-
late further sexual activity.214,215 Nipple self-stimulation 
in women activates the genital sensory cortex (as well as 
the thoracic) region of the homuncular map in sexually 

experienced women.205 The nipple/areola complex in 
women is innervated by the anterior cutaneous branches 
of the 1st to 6th intercostal nerves and laterally from the 
lateral cutaneous branches of the 4th intercostal nerve 
with additional innervation by cutaneous branches of 
the 3rd and 5th intercostal nerves (reviewed in Ref. 214). 
Innervation of the nipple appears to follow a pyramidal 
hierarchy, with most cutaneous sensory input in most 
women coming from the 4th lateral cutaneous branch, 
followed by the 3rd and 4th anterior branches.

Sensory innervation of the upper and lower lips comes 
from the maxillary and mandibular branches of the tri-
geminal (5th) cranial nerve, respectively.216 Primary neu-
rons send input to the trigeminal sensory nucleus, which 
is actually a sensory ganglion in the brainstem. Second 
order neurons project from there to the ventropostero-
lateral thalamus, and from there tertiary neurons carry 
input to the secondary somatosensory cortex (SII), in the 
lip region of the homunculus. The blood supply to the 
lips comes from the external carotid system,217 which is 
aroused during parasympathetic activation of the lin-
gual nerve. In the case of vasodilation in general for all 
genital and erogenous tissues, antihypertensive drugs 

Bregma Lambda

Interaural

VMNLH

PVN
mPOA

RM
RP nPGi

NTS

Bar

CG

Cerebral cortex

Corpus callosum

Hippocampus

Pineal

Olfactory
bulb

Fomix

Septum

Anterior
commissure

Olfactory
tubercle

Preoptic
area

Optic chiasm

Hypothalamus

Pituitary

Pons
Medulla oblongata

Spinal
cord

Midbrain

Posterior
commissure

Superior
colliculus

Inferior
colliculus

Cerebellum

Thalamus

1

2

3

4

5 6 6
6

7

8

9

910

5 4 3 2 1 0 –1 –2 –3 –4 –5 –6 –7 –8 –9 –10 –11 –12 –13 –14 –15

5 4 3 2 1 0 –1 –2 –3 –4 –5 –667891011121314

3V

4V

4V

Lateral 0.40 mm

FIGURE 50.9 Dots depict areas of transneuronal staining in the brain 4 days after an injection of pseudorabies virus (a retrograde tracer) 
to the glans clitoris. (Source: Adapted from Marson.171,209) mPOA, medial preoptic area; PVN, paraventricular nucleus; LH, lateral hypothala-
mus; VMN, ventromedial hypothalamus; CG, central gray; Bar, Barrington’s nucleus; RM, medial Raphé; RP, posterior Raphé; nPGi, nucleus 
paragigantocellularis; NTS, nucleus of the solitary tract.



50. FEMALE SEXUAL BEHAVIOR2308

7. REPRODUCTIVE BEHAVIOR AND ITS CONTROL

like nifedipine and propranolol can diminish erectile 
capability in both men and women.

In female rats, cutaneous stimulation of the flanks 
and perineum induces lordosis. Estradiol increases the 
area where cutaneous stimulation around the flanks and 
perineum induces lordosis, essentially sensitizing the 
somatosensory inputs to induce the reflex. This occurs 
by actions of estradiol in the periphery and within CNS 
modules that alter the propensity for cutaneous stimula-
tion to induce lordosis.32 Estradiol induces neurochemical 
and ultrastructural changes in the hypothalamic module 
(discussed below), notably in the VMH in concert with 
actions in other hypothalamic nuclei like the mPOA, 
that lead to an altered activation of neurons in the mid-
brain module of the central gray, which in turn activate 
neurons of the lateral vestibular nucleus in the brainstem 
module. This outflow activates the lateral vestibulospinal 
and reticulospinal tracts that synapse on motor neurons 
of the spinal module in the lower spinal cord (L5, L6, S1) 
to contract the lateral longissimus and transversospinalis 
muscles of the back, producing the characteristic arch of 
lordosis. However, such contractions are produced only 
when somatosensory afferents from the skin of the rump, 
tailbase, and perineum are activated by the male during 
anogenital investigation and more extensively during 
mounts with pelvic thrusting. Thus, although lordosis is 
essentially a spinal reflex, it is normally under tonic inhi-
bition during periods of sexual nonreceptivity. The action 
of steroid hormones in the hypothalamic module is to 
constrain the lordosis reflex to an extended periovulatory 
period and disinhibit it in response to competent somato-
sensory stimulation of critical erogenous zones in the skin.

Primary Visual and Olfactory Senses

Sexual stimulation is often defined in terms of geni-
tal and erogenous somatosensory inputs (as those 
are explicitly and directly sexual), but largely sepa-
rate from the main sensory systems that detect sexual 
incentives at a distance. In primates, and especially 
sighted humans, such stimuli are visual and auditory 
in nature. In other animals like rodents, they are olfac-
tory in nature. Some stimuli are unconditionally arous-
ing to human females (e.g., erotic pictures of attractive 
nudes or copulating couples218,219) or female rats (e.g., 
the smell of male rat fur220). Those unconditioned stim-
uli evoke attention and sexual approach behaviors like 
nose-pokes in rats. Treatments that disrupt olfactory 
input in rats, e.g., olfactory bulbectomy, zinc sulfate 
lesions of the olfactory epithelium, or olfactory occlu-
sion with a polyethylene tube inserted into the nose, 
severely disrupt appetitive solicitations in females, but 
do not alter lordosis if the female is mounted.221 Such 
treatments block copulation in male rats if they are 
sexually naïve, but not experienced.28 Male olfactory 

cues alone activate Fos in the main olfactory (piriform) 
cortex, mPOA, VMH, and MEA of sexually experienced 
OVX rats primed with estradiol and progesterone.221

Erotic visual cues are used in studies of sexual arousal 
and desire in women (and men), and include still pic-
tures or videos of nudes or different types of sexually 
explicit heterosexual or homosexual interaction. These 
are also used in brain imaging studies to correlate 
brain activation using fMRI or PET. Women experience 
cyclic fluctuations in sexual attention and arousability. 
For example, Mass et al.60 reported pre-menopausal 
 women’s self-reported sexual desire and electromyo-
graphic responses of the facial zygomasticus major mus-
cle (used for smiling and expressing joy) changed across 
the menstrual cycle during their exposure to pictures of 
naked men, with increases in smiling during the follicu-
lar phase and decreases during the luteal phase. Notably, 
these responses co-varied with increases and decreases 
in plasma progesterone, respectively. Similarly, event 
related cortical potentials (ERPs) recorded by scalp elec-
trodes attached to the head that correspond to attention 
and stimulus processing for working memory increase 
in women following the presentation of sexually arous-
ing pictures, but not pictures of babies or body care prod-
ucts, during the ovulatory phase.59 The same pictures do 
not activate those ERP components during other phases 
of the menstrual cycle, or in women taking oral contra-
ceptives.222 Another study used fMRI to compare brain 
activation of premenopausal women in mid-luteal or 
menstrual phases of the cycle in response to erotic video 
clips relative to neutral video clips.58,223 Increased acti-
vation by the erotic clips was observed in the anterior 
cingulate cortex (ACC), left insula, orbitofrontal (OFC), 
and parietal cortices, NAc, and hypothalamus, during 
the mid-luteal phase relative to the menstrual phase. 
These are virtually identical to the areas activated in men 
exposed to similar stimuli. The OFC is also activated by 
pictures of male faces, and the degree of activation is cor-
related positively with estradiol and progesterone levels 
in blood. The augmentation of the OFC response predicts 
the perceived attractiveness of the faces.61 The ability of 
erotic visual stimuli to activate limbic and cortical struc-
tures is reduced after menopause, but can be restored to 
premenopausal levels following combined estradiol and 
testosterone treatment.138 Thus, timing, context, and hor-
monal milieu, are extremely important variables to bear 
in mind when studying sexual arousal and responses to 
visual sexual stimuli in women.

HORMONAL PRIMING AND CONTROL

Steroid hormone synthesis in the ovaries is under the 
control of follicle stimulating hormone (FSH) and LH 
that are released from the anterior pituitary in response 
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to gonadotropin releasing hormone (GnRH) (see Chap-
ter 28). FSH stimulates the growth of the ovarian follicle 
(and egg). When the follicle reaches a certain level of 
maturation it begins to secrete estradiol. LH causes the 
rupturing of the mature follicle to release the egg. The 
follicle becomes the corpora lutea (“yellow body”) which 
then synthesizes and releases progesterone. The peak in 
estradiol secretion by the ovaries is followed by a small 
but critical rise in circulating androgens, notably testos-
terone, which is tightly linked in time to ovulation, and 
which, either alone in some species or in concert with the 
actions of preovulatory progesterone (from the follicle), 
activates appetitive approach and solicitation behaviors 
in many species. In humans, such behaviors are conso-
nant with an increase in sexual desire. In most species, 
the expression of female sexual behavior is tightly regu-
lated by ovarian hormones and occurs only during the 
periovulatory period.

Lordosis is perhaps the most-characterized and studied 
model of the hormonal regulation of behavior. In fact, the 
hormonal and neuroendocrine regulation of lordosis is 
similar in many species, including rats, mice, guinea pigs, 
hamsters, and gerbils. During the estrous cycle of these 
species, the secretion of estradiol followed by progester-
one from the ovaries results in a period of sexual behavior 
that is tightly linked to ovulation.65,224–226 Removal of the 
ovaries results in the loss of expression of female sexual 
behaviors.65,227 High levels of sexual behavior in estrous 
cycling or OVX animals require estradiol priming fol-
lowed by progesterone.226,228 After behavioral estrus ends, 
sexual receptivity is not expressed until the next proestrous 
stage of the estrous cycle at which time estradiol secre-
tion followed by progesterone once again induces sexual 
behavior. Although females of each of these species229–232 
may respond to estradiol alone, estradiol followed by pro-
gesterone is typically necessary for the expression of the 
full suite of female sexual behaviors closely resembling 
that seen in estrus-cycling animals.14,65,225,227,233,234 The 
increase in both lordosis and appetitive sexual behaviors 
also occurs in OVX rats primed repeatedly with estra-
diol alone84 and in ovary-intact, aged rats treated with 
testosterone.235

In some cases, after exposure to progesterone, rats,236 
hamsters,231 guinea pigs,237 and mice238 become refrac-
tory to further stimulation of sexual behavior by either 
progesterone alone or, in some cases, to estradiol and 
progesterone. Although progesterone is believed to cause 
heat termination in guinea pigs, the role of progesterone 
in termination of sexual behavior during the estrous cycle 
of rats239 is unclear. Based on work in guinea pigs to be 
discussed later, it has been suggested that progesterone 
desensitizes its response to itself, leading to termination 
of sexual receptivity and subsequent facilitation requires 
additional exposure to estradiol. Estradiol priming 
of behavioral response to progesterone generally takes 

about a day,240,241 However, an intravenous injection of 
progesterone may facilitate the expression of lordosis 
within an hour of injection in estradiol-primed rats.242–245 
Interestingly, latencies as brief as 10 min for progesterone 
facilitation have been reported.246

Steroid Hormone Receptors

Although other hormones are involved, estradiol and 
progesterone have been the most extensively studied 
in the regulation of female sexual behavior in a vari-
ety of rodent species. This regulation involves a now 
“classic” steroid hormone action on specific intracellu-
lar receptors that act as transcription factors to induce 
gene expression (see Chapter 9). In turn, this sets up the 
excitatory and regulatory functions of the sexual brain, 
altering neurotransmitter synthesis, release, binding and 
reuptake, and altering synaptic connections in critical 
regions. Because of their role in the regulation of sexual 
behavior, understanding the regulation of these recep-
tors is essential. A basic principle is the homologous and 
heterologous regulation of the receptors, each essential 
to ensure the critical timing of behavioral events with 
ovulatory events. This, in turn, sets up different neuro-
chemical actions that time the onset, duration, and offset 
(inhibition) of the behavior.

A wide variety of steroid binding proteins has been 
described in the brain. These include the classic (so-
called, nuclear) receptors that have been most exten-
sively studied: ERα, ERβ, progesterone receptor A 
(PR-A; often referred to as progestin receptor A), proges-
terone receptor B (PR-B), and androgen receptor (AR). 
In addition to these classic receptors, other receptors, 
notably cell-surface receptors, have been described more 
recently that also mediate the effects of steroid hormones 
in the brain. Although these novel receptors are of great 
interest, much less is known about their role in the regu-
lation of sexual behavior. As models of the regulation of 
female sexual behavior that involve the novel receptors 
develop, they must also be able to account for the data 
demonstrating the importance of the classic steroid hor-
mone receptors as well.247

Classic ERs and Their Distribution in Brain

As described above, several subtypes of ERs exist, 
including the well-characterized classic (primarily) cell 
nuclear ERα and ERβ. Although relatively little is known 
about the neuroanatomical distribution of membrane-
based ERs, a good deal is known about the distribution 
of ERα and ERβ. The following description of the brain 
localization of ERs focuses on the pattern of ERα and 
ERβ expression.

Four independent techniques have convergently 
revealed the distribution of ovarian steroid receptors 
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in the mammalian brain: in vitro binding, receptor 
autoradiography, immunohistochemistry, and in situ 
hybridization. These techniques measure the anatomi-
cal distribution of receptor binding activity, protein or 
mRNA expression, respectively, providing compelling 
evidence for regionally specific expression of these recep-
tors. Table 50.1 summarizes the brain regions with the 
highest levels of ERs, based on these studies. Although 
most mapping studies have used rats, mice and guinea 
pigs, partial mapping of either ER protein or mRNA has 
been done in many other species, ranging from fish248 
and lizards249 to musk shrews,250 sheep,251 human,252,253 
and nonhuman primates,254,255 and the overall pattern is 
conserved.

The first studies delineating the anatomical distri-
bution of estradiol binding used steroid receptor auto-
radiography with 3H-estrogens injected systemically. 
Although the initial observation of binding of an estro-
gen in the brain was made in cats,256,257 in more compre-
hensive experiments,258,259 regions of the hypothalamus 
and amygdala were especially rich in ERs. With the later 
discovery of distinct α and β subtypes of nuclear ER, 
autoradiographic studies were performed in transgenic 
animals with a “KO” of each of the subtypes of the ER.260 
These studies confirmed distinct neuroanatomical distri-
butions for ERα and ERβ.

A great deal of the early work on the role of ERs in 
female sexual behavior and the biochemical character-
ization of them relied on in vitro 3H-estradiol binding in 
cell nuclear preparations of homogenates of particular 
brain areas.261 In microdissection studies, the areas with 
the greatest density of ERs were in close agreement with 
autoradiographic studies showing ERs most abundant 
in the mPOA, VMH, and MEA.262

The early autoradiography and ligand binding stud-
ies on neural ERs relied on the binding of 3H-estradiol 

to receptor proteins. Unfortunately, these techniques 
did not distinguish binding to each of the ER subtypes. 
However, the molecular cloning of the ERα and ERβ 
led to development of antibodies that could be used in 
immunocytochemical procedures that were able to dis-
tinguish the two subtypes. Immunocytochemical pro-
cedures were developed for both ERα263–265 and ERβ.266 
Although immunohistochemistry provides the opportu-
nity for superb subcellular localization, it has the disad-
vantage of not being able to distinguish between bound 
vs unbound receptors. This differs from autoradiogra-
phy, which depends upon the receptor binding ligand. 
Thus, in addition to confirming the general pattern of 
receptor expression that had been revealed by receptor 
autoradiography, immunohistochemistry uncovered 
ERs in axons, dendrites, and terminals.267,268 The pres-
ence of ER immunoreactivity in these nonnuclear sites 
complemented other evidence for nongenomic actions 
of estrogens, which will be discussed later.

The mRNA for ERα and ERβ has been mapped with in 
situ hybridization techniques,269 and the neuroanatomi-
cal distribution of mRNA for the ERα and ERβ isoforms 
has been completed.270 The results are in agreement with 
mapping studies based on receptor autoradiography 
in KO mice and subtype-selective immunocytochemis-
try. As a testament to the functional significance of the 
receptors in these regions, mating behavior produces a 
pattern of immediate early gene expression in the brain, 
a marker of neuronal activity, that corresponds to the 
neuroanatomical pattern of many locations of ER den-
sity.168,271 Thus, ERs are well positioned to modulate 
the activity of the neural circuits that control mating 
behavior.

In summary, the neuroanatomical distribution of 
nuclear ERs is well documented, with the pattern of ERα 
expression coinciding well with brain regions known to 

TABLE 50.1 The dominant Pattern of ER Subtype Expression in Brain Regions Involved in Reproductive Behavior

ER-Alpha ER-Beta Both

Amygdala Amygdalohippocampal area Medial nucleus

Cortical nucleus

Septum Subfornical organ Bed nucleus stria terminalis

Hypothalamus Median preoptic nucleus Paraventricular nucleus Medial preoptic area

Anteroventral periventricular nucleus

Arcuate nucleus

Posterodorsal preoptic nucleus

Ventromedial nucleus

Mesencephalon Periaqueductal gray Dorsal raphé

Locus coeruleus

A1, A2
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promote female sexual behavior. In a later section, we 
discuss the concept that in many areas with high levels 
of ERα expression, such as the VMH and POA, estradiol 
treatment increases the expression of the two forms of 
the progestin receptor (PR-A and PR-B).

Necessity of ERs for Hormonal Induction  
of Female Sexual Behavior

The notion that ERs are essential in order for estradiol 
to prime mice to become sexually receptive has been 
demonstrated by a wide variety of techniques, includ-
ing: (1) injection of estrogen antagonists, which block 
the binding of estradiol nonselectively to ERs, or estro-
gen agonists that selectively activate either ERα or ERβ, 
(2) ER gene-disrupted mice (ER knockouts; ERKOs), in 
which the ERα or ERβ gene has been disrupted, and (3) 
RNAi silencing of ERα in specific brain regions.272 The 
results of each approach are consistent with the conclu-
sion that ERα is essential for the effects of estradiol on 
the expression of sexual receptivity, and that ERβ may 
have a modulatory role.

Effects of Estrogen Antagonists and Agonists
Early studies using estrogen antagonists to block the 

binding of estradiol to ERs were unequivocal in demon-
strating the absolute necessity of binding to ERs in the 
mechanisms by which estradiol primes rats for female 
sexual behavior.273,274 However, those antagonists were 
not specific for ER subtype. More recently, experiments 
using the ER subtype-specific agonists, propyl-pyrazole 
triol (PPT; ERα agonist) and diarylpropionitrile (DPN; 
ERβ agonist) indicate that ERα mediates the effects of 
estradiol on both appetitive and consummatory aspects 
of sexual behavior in female rats. Although the ERβ 
agonist is without effect when administered alone, it 
reduces the effects of the ERα agonist, suggesting that 
ERβ has a modulatory role in damping the effects of ERα 
activation.275

KOs and Knockdowns
KO strains of mice have been developed in which the 

gene for each form276,277 or both forms278 of ER is dis-
rupted. Targeted disruption of the ERα gene (ERKO) 
completely eliminates hormonal induction of female 
sexual behavior.279,280 In contrast, disruption of the ERβ 
gene (BERKO) was reported to be without effect in 
OVX, hormone-injected mice,281 although it extended 
the period of behavioral estrus and enhanced receptiv-
ity.282 Double KO mice with disruption of both, ERα and 
ERβ, exhibit decreased levels of sexual receptivity sup-
porting the critical role of ERα in the sexual behavior of 
female mice.281 Further support for involvement of ERα 
in female sexual behavior, and specifically its role in the 
VMH comes from the use of RNAi silencing of this gene 

in the VMH.283 However, in a more recent study using 
the more complete ERβ-null mouse (ERβST

L−/L−),284 com-
plete elimination of ERβ resulted in a decrease in lordo-
sis and attractivity in homozygous female mice.285 Taken 
together, these experiments point to a critical involve-
ment of both forms of the ER in the regulation of female 
sexual behavior in mice.

Regulation of ERs and ER Action

Because of the importance of ERs in the induction 
of female sexual behavior, it is essential to understand 
the ways in which levels of ERs in cells are regulated by 
estradiol and other compounds. There is some inconsis-
tency among studies on regulation of ERα protein and 
mRNA levels by estradiol. However, estradiol has typi-
cally been reported to down-regulate ERα in most neu-
roanatomical areas.286–291 Most studies find that estradiol 
also down-regulates ERβ in some neuroanatomical 
areas but is without effect in others.289,292–294 Besides the 
homologous down-regulation of ERs by estradiol, ERs 
are down-regulated by progesterone295–298 under some 
circumstances. Down-regulation in specific neurons 
that results from either hormone would be expected to 
decrease hormonal responsiveness in those neurons. The 
inconsistencies that exist in the literature with respect to 
the regulation of ERs by estradiol are to be expected, 
because there are numerous, important methodological 
differences between studies, such as doses of estradiol 
used, duration of exposure to hormone, time since OVX, 
etc. Furthermore, there is heterogeneity in the regula-
tion of each form of ER, not just among neuroanatomical 
areas, but even among the neurons in a neuroanatomi-
cal area.289 Nevertheless, such receptor down-regulation 
may help to explain why a substantial proportion of 
pre-menopausal women taking synthetic estradiol-con-
taining oral contraceptives experience a blunting of their 
sexual desire, and an uncoupling of desire around the 
time that ovulation would normally have occurred.299,300

Pattern of Estradiol Exposure Sufficient to 
Induce Sexual Behavior

Acute Administration
The pattern of hormonal exposure is another critical 

variable in determining response to hormones. OVX rats 
need not be exposed to estradiol continuously during 
the priming period in order to express sexual behavior. 
Two pulses of a low dose of estradiol (e.g., 5 μg of estra-
diol benzoate, EB) spaced 24 h apart are more effective in 
inducing female sexual behavior after subsequent pro-
gesterone administration than a single higher dose of EB 
(e.g., 10 μg) or continuous exposure to estradiol from a 
silastic capsule implanted subcutaneously (sc) for sev-
eral hours.301–303 The behavioral effects of each pulse can 
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be blocked by either a protein synthesis inhibitor304 or 
pentobarbital anesthesia,305 suggesting that both protein 
synthesis and neuronal activity are required for each of 
the pulses of estradiol to be effective. The potential roles 
of classic and membrane receptors in these processes are 
discussed below.

Although continuous exposure to estradiol is not 
essential for the expression of sexual behavior, the con-
tinued presence of estradiol-bound ERs seems to be a 
requirement; administration of an estrogen antagonist 
that displaces receptor-bound estradiol inhibits sexual 
behavior, even when administered just prior to proges-
terone injection within a few hours of testing.306 This 
finding suggests that the down-regulation of ERs by 
progesterone, which would then be expected to reduce 
ER-dependent estradiol action, may be part of the mech-
anism by which the period of estrus terminates.

Chronic Administration
Priming regimens in the literature vary, as do the 

strains of OVX rats used. It is clear, however, that a low 
dose of estradiol (e.g., 5 μg of EB) injected sc induces 
a moderate lordosis, but no appetitive approach or 
solicitation behaviors. The addition of progesterone 
(e.g., 100–500 μg sc) can increase lordosis further, and 
stimulate appetitive behaviors. However, continuous 
EB exposure through a silastic capsule implanted sc 
results in high and continuous levels of both appeti-
tive sexual behavior and lordosis, as do frequent injec-
tions of EB, which sensitize both lordosis and appetitive 
sexual behaviors in sexually experienced female rats. 
Maintenance of serum estradiol concentrations above 
15 pg/ml over a 5-week period with silastic capsules 
maintain normal body weight along with normal pat-
terns of appetitive and consummatory sexual behaviors 
in female rats.307 Serum concentrations below this cause 
increases in body weight and a dramatic suppression of 
appetitive responses with smaller decreases in lordosis.

The progressive elevation of appetitive and consum-
matory sexual behaviors by sc injections of estradiol is 
dependent on the dose and injection interval (Figure 
50.10), such that as EB dose increases, behavioral sensi-
tivity increases.84,301,308–314 Notably, the sensitization is 
not blocked by ADX in OVX rats,84 making it unlikely to 
be induced by facilitated release of adrenal progesterone. 
This finding is important because it further demonstrates 
that hormones can override inhibitory mechanisms that 
would otherwise act to inhibit sexual behavior as estrus 
terminates. A function of this increased sensitivity to the 
hormones, or decreased sensitivity to VCS, may be to 
ensure the female receives sufficient stimulation to maxi-
mize reproductive success.75,84

Estrogen sensitization is an important consideration 
in pharmacological studies that investigate compounds 
that might facilitate sexual behavior. Typically, OVX 

females are primed with a dose of EB that produces low-
to-moderate amounts of appetitive sexual behaviors and 
lordosis. This is done to prevent ceiling effects that occur 
when animals are primed with EB and progesterone. 
However, animals are often tested repeatedly to reduce 
the number of animals used or because long-term treat-
ment effects are of interest. The sensitization of sexual 
behaviors with chronic EB is confounding and makes 
data interpretation complex. This is particularly prob-
lematic in studies where the facilitative actions of a drug 
seem to disappear over time. EB dosing regimens have 
been characterized for OVX rats to achieve desired base-
line rates of female sexual behavior across time84 which 
will help overcome these problems. Stable baselines 
are vitally important in preclinical models of female 
sexual function. For example, 5 μg EB administered 
every 7 days, induces a stable baseline84,315,316; and when 
given in combination with flibanserin, a mixed 5-HT1A 
agonist/5HT2A antagonist, appetitive sexual behav-
iors were increased significantly by the drug following 
3 weeks of treatment,316 whereas the control group did 
not manifest any increase in behavior.

ER Co-regulators

Another level of regulation of response of a cell to a 
hormone lies in steroid receptor coregulators; intracellu-
lar proteins that allow for efficient regulation of the tran-
scription of steroid receptors (see Chapter 9).317 These 
proteins bridge the receptor and the  general transcrip-
tional machinery and modify  promoter regions of the 
receptor by a variety of mechanisms. Although there 
are over 300 steroid receptor  coregulators,318 and we 
have much to learn about how they modulate the 
action of ERs, perhaps fine-tuning responses to ste-
roid hormones, we do understand the role of three 
coactivators in regulation of female sexual behavior. 
Work using intracerebroventricular infusion of anti-
sense oligonucleotides directed against the mRNA for 
particular steroid receptor coactivators in rats sug-
gests that steroid receptor coactivator-1 (SRC-1) and 
cAMP response element binding protein (CBP) act 
together to modulate the induction of sexual recep-
tivity by estradiol,319 as well as the induction of pro-
gestin receptors319 and progesterone-facilitated sexual 
behavior in female rats.320 Likewise, SRC-1 and SRC-2 
play an important role in the cellular action of estra-
diol in the induction of female sexual behavior in rats 
and mice.321

In order for coactivators to influence the activity of 
steroid receptors, they must be coexpressed in the same 
neurons as the receptors. In fact, SRC-1 and SRC-2 are 
expressed in most cells expressing ovarian steroid 
hormone receptors in the VMH, mPOA, and arcuate 
nucleus (ArcN) of female rats and mice.317 Although 
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in vitro studies suggest that the relative expression lev-
els of the coactivators and corepressors determine cell-
specific, appropriate and graded responses to steroid 
hormones,315 there has to date been no work on this sub-
ject in the brain and on behavior. It is however likely that 
this represents another level of fine-tuning of the hor-
monal regulation of female sexual behavior.

Is Binding of ERs to Estrogen Response 
Elements Essential?

Not all ER-mediated responses require the prototypi-
cal estrogen response elements on specific genes. A gene 
knock-in mouse model with a mutated ERα that does not 
bind to estrogen response elements (EREs)322 expresses 

FIGURE 50.10 Sexual behaviors of OVX Long-Evans females treated with varying doses of estradiol benzoate (EB) at 8-day (left) or 4-day 
(right) intervals. (A) Appetitive sexual behaviors increased in females treated with 10 μg EB, but not 2 μg or 5 μg when treated at 8-day intervals. 
(B) Lordosis quotient (LQ) did not sensitize when treated with EB at 8-day intervals. (C) Collapsed across EB treatment group, females were less 
defensive toward males as of Test 3. (D) When treated at 4-day intervals sexually appetitive behaviors sensitized in females treated with 10 μg EB. 
(E) LQ sensitized in females treated with 5 and 10 μg EB when treated at 4-day intervals. (F) Defensive behaviors were unaffected when treated 
with EB at 4-day intervals. aDifferent from Test 1; bDifferent from Tests 1 and 2; cDifferent from Tests 1, 2, and 3. dDifferent from Tests 1–4. Numeri-
cal superscripts are used to indicate differences from specified test day. Brackets represent main effect of EB Group. *p < 0.05, **p < 0.01, ***p < 0.001. 
Source: Reprinted from Jones et al.,84 with permission of Elsevier.
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negative, but not positive, feedback to estradiol on 
gonadotropin secretion, suggesting that negative feed-
back does not require binding of ERα to an ERE. While 
expression of masculine sexual behavior in males was 
shown to require binding to EREs,323 results on female 
sexual behavior have not been reported. Nevertheless, 
this work suggests that some effects of estradiol that are 
relevant to female sexual behavior do not require binding 
the nuclear ER to an ERE, opening up the possibility that 
estradiol induces these effects through membrane ERs.

Role of Membrane ERs

Recent work has made clear that, while classic ERs are 
principal players in regulation of female sexual behavior 
by estradiol, membrane mechanisms are also involved. 
Although much less is known about membrane ERs than 
about the role of classic, so-called, nuclear ERs, there 
is now a good deal of evidence for the involvement of 
membrane mechanisms of action for the effects of estra-
diol on female sexual behavior. A variety of putative 
membrane ERs has been described,324 including the clas-
sic ERα and ERβ, which can be translocated to plasma 
membranes,325 ER-X, STX (a tamoxifen analogue that is 
estrogenic)-activated membrane ER, and GPR30 (G pro-
tein coupled estrogen receptor; GPER).

Although still in an early stage of research, the data 
argue strongly for the involvement of membrane ERs 
in the regulation of female sexual behavior by estradiol. 
For example, a biotinylated form of estradiol, which 
is impermeable to the cell membrane, interacts with 
metabotropic glutamate receptors in the mPOA, result-
ing in an increase in lordosis.326 Specifically, membrane 
ERα326 and/or the STX-activated membrane ER327 is 
believed to interact with the metabotropic glutamate 
receptor 1a in the ArcN, resulting in the internalization 
of mu-opioid receptors in the mPOA and consequently 
an increase in lordosis via projections to the VMH. It 
should be noted, however, that while the STX compound 
facilitates the expression of lordosis in OVX rats, it only 
does so in rats administered a subthreshold dose of estra-
diol.327 Therefore, the STX-activated mER participates 
in the process of estradiol priming of sexual behavior, 
but it is not sufficient to substitute for estradiol. As dis-
cussed earlier, administering estradiol in discrete pulses 
allows much lower doses of estradiol to be used to 
induce sexual behavior. However, little is known about 
the cellular basis for the enhanced response to pulsed 
exposure as opposed to bolus injection of estradiol. In 
some experiments, estradiol conjugated to bovine serum 
albumin (another form of estradiol which is imperme-
able to cell membranes), has been used.328 The fact that 
this conjugated estrogen can substitute for either the first 
or later pulse of estradiol indicates that membrane ERs 
are capable of completing at least part of the priming for 

sexual behavior. Compounds that activate either protein 
kinase A (PKA) or PKC can also substitute for the conju-
gated estrogen,328 suggesting involvement of these two 
intracellular signaling pathways in the priming action of 
estradiol on female sexual behavior. It should be noted 
that experiments using protein conjugates of steroid 
hormones must be interpreted very cautiously because 
of the possibility that the protein could be cleaved from 
the steroid molecule329 and because the position of the 
protein on the steroid can have unexpected effects on 
function.330 Nevertheless, the data argue for the ability 
of membrane ER mechanisms to substitute for interac-
tion of estradiol with classic ERs.

With the exception of the work of Kow and others,328 
mechanistic studies have typically focused on the role 
of either nuclear ERs acting as transcriptional regula-
tors or on the role of membrane receptors in regulation 
of sexual behavior. However in vitro, ERα and ERβ each 
may be processed to become associated with membranes, 
and are capable of signaling through the mitogen acti-
vated protein (MAP) kinase pathway.331–333 This finding 
indicates that caution must be exercised in interpreting 
experiments which used hormone antagonists, antisense 
oligonucleotides or targeted gene disruption to test the 
involvement of ERs acting as transcription factors. If the 
ER genes that direct synthesis of the classic ERs also direct 
the synthesis of membrane receptors in the brain, then 
the manipulations that target the classic ER could disrupt 
membrane receptors as well as classic nuclear receptors.

As mentioned earlier, ERα immunoreactivity267,334 
has been observed in extranuclear locations within the 
guinea pig hypothalamus, including axon terminals and 
distal dendrites267 (Figure 50.11). In some cases, this has 
been observed associated with synaptic densities and 
plasma membranes, which is consistent with the idea 
that classic ERs can be directed to membrane sites.

To summarize this section, in addition to actions of 
estradiol on classic ERs, estradiol may signal through 
a variety of membrane receptors to either substitute or 
perhaps, augment the behavioral effects of estradiol act-
ing on classic ERs. There is still a great deal to be learned 
about the interplay of these various receptors in the 
fine-tuning of the hormonal induction of female sexual 
behaviors.

Classic PRs and Their Distribution in Brain

As with ERs, evidence from receptor autoradiogra-
phy, immunohistochemistry, and in situ hybridization 
presents a coherent picture of the pattern of expression 
of nuclear PRs, although information about membrane 
receptors is still being gathered. Early receptor autora-
diography experiments first revealed nuclear progester-
one binding activity in the rodent brain.335,336 Although 
progesterone binding was found in regions with an 
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abundance of ERs, such as the hypothalamus and amyg-
dala, a few brain regions expressed PR in the absence of 
ER, suggesting separate functions. Double-label immu-
nohistochemistry studies have shown that ERα and 
PR are often co-localized at the cellular level in brain 
regions known to control female sexual behavior.289,337 
The mapping of mRNA of the PR has been conducted 
using in situ hybridization techniques in rats, rabbits, 
lizards and fish.338–341 Although there may be some 
species differences in regulation, the overall pattern of 
nuclear PR expression is conserved in regions associ-
ated with reproductive behavior, including the VMH, 
mPOA, median preoptic nucleus, anterior hypothalamic 
area, medial nucleus of the amygdala, anteroventral 
periventricular nucleus, lateral habenula, ArcN, and 
 periaqueductal gray.342,343 It should be noted many of the 
PR-immunoreactive cells in the VMH are located outside 
the  Nissl-defined nucleus,337 and these cells have been 
implicated in the facilitation of sexual behavior by pro-
gesterone, at least in guinea pigs.344

Although there is a great deal of overlap between neu-
roanatomical sites containing estradiol-induced PRs and 
those that contain ERs, immunocytochemical experi-
ments demonstrated conclusively that estradiol-induced 
PRs are co-expressed in ER-ir cells in brain regions 
involved in regulation of female sexual behavior.289,345 
Virtually all cells expressing estradiol-induced PRs also 
express ERα (Figure 50.12).

The PR is synthesized from alternative, estrogen-
inducible promoters on the PR gene, resulting in two iso-
forms of the receptor (PR-A and PR-B) with somewhat 

FIGURE 50.12 Photomicrographs 
of PR-immunoreactivity (right panel) 
and ERα-immunoreactivity (left panel) 
coexpression in the VMH of an estradiol-
primed, OVX guinea pig showing that 
virtually all estradiol-induced PR cells 
also coexpress ERα-immunoreactivity. 
Arrowheads point to cells containing 
both estradiol-induced PR-immunoreac-
tivity and ERα-immunoreactivity. Source: 
Reprinted from Blaustein and Turcotte,345 
with permission of Karger.

FIGURE 50.11 ER-immunoreactivity in the VMH of an OVX 
guinea pig, visualized by the silver-intensified, diaminobenzidine-
peroxidase technique in vibratome-cut sections. Magnification 
bars = 100 μm. Source: Reprinted from Blaustein et al.,267 with permission of 
the Endocrine Society.
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different transcriptional activities.346,347 Although our 
understanding of the differential distributions of these 
PR subtypes remains incomplete, the two isoforms are 
expressed in the rat brain,348 and the ratio of the two 
isoforms varies under different hormonal349–352 and 
behavioral353 conditions. Experiments using antisense 
oligonucleotides directed at the mRNA for each or both 
of the isoforms demonstrate differential regulation of 
particular genes by each isoform.354

Necessity of PRs for Progesterone Regulation  
of Female Sexual Behavior

The characterization of neural PRs suggested the 
hypothesis that PRs are essential for the facilitation of 
sexual behavior by progesterone.355 This hypothesis pre-
dicted that sensitivity to progesterone is determined by 
the concentration of unoccupied PRs available in neurons 
involved in progesterone-facilitated sexual behavior, and 
response is dependent on an adequate concentration of 
activated PRs in those cells. An increased concentration 
of PRs (e.g., after estradiol priming) would be expected 
to increase the sensitivity of the neural substrate for pro-
gesterone, presumably by increasing the concentration 
of receptors that become activated in response to proges-
terone treatment. Likewise, a decreased concentration of 
unoccupied PRs would be expected to result in decreased 
sensitivity to progesterone. This PR hypothesis356 was 
corroborated in later work on the regulation of PRs that 
will be discussed. A central mechanism involving neuro-
progestin activation of PR, or ligand- independent acti-
vation of PR, has not been determined.

Upregulation of PRs

As discussed, estradiol increases the concentration of 
PRs in the hypothalamus, mPOA, and a number of other 
brain regions (Figure 50.13). Coincident with the increase 
in the hypothalamus, behavioral responsiveness to pro-
gesterone increases. The increased concentration of PRs 
and behavioral responsiveness to progesterone are both 
transient.358,359 In gonadally intact, estrus-cycling rats, 
the concentration of unoccupied PRs in the hypothala-
mus increases during proestrus in response to estra-
diol.244 Collectively, these experiments suggested that 
PRs are a critical aspect of the cellular mechanism by 
which progesterone facilitates sexual behavior.

The duration of sexual receptivity for each species is 
tightly regulated, lasting about 8 h in guinea pigs360 and 
about 14 h in rats.361 The timing of the duration of sexual 
receptivity is referable at least in part to the regulation 
of activated PRs in particular neurons.356 The presence 
of activated PRs in particular neurons presumably leads 
to the expression of neuropeptides and neurotransmit-
ters described below, but the presence of the activated 

PR may act to gate the transcriptional activity of the 
relevant downstream genes. Progesterone injected in 
estrogen-primed, OVX guinea pigs and rats244,362,363 
or the preovulatory progesterone secreted during the 
estrous cycle363 binds to and activates neural PRs. The 
presence of activated PRs in a pooled sample of the 
hypothalamus-preoptic area after progesterone injection 
correlates well with the ability of female rats to display 
lordosis.362 Manipulations which prolong the period that 

(A)

(B)

(C)

FIGURE 50.13 PR-immunoreactivity in the rostral aspect of the 
ventrolateral nucleus of the hypothalamus (VLN) and arcuate nucleus 
(ARC) of OVX guinea pigs injected with: (A) oil (0 h) and oil (42 h), 
perfused 24 h later, (B) estradiol benzoate (0 h) and oil vehicle (42 h), 
perfused 24 h later, or (C) estradiol benzoate (0 h) and progesterone, 
perfused 24 h later. Magnification bar = 100 μm. Source: Reprinted from 
Blaustein and Turcotte,357 with permission of Wiley.



HoRmonAl PRImIng And ConTRol 2317

7. REPRODUCTIVE BEHAVIOR AND ITS CONTROL

hypothalamic PRs remain occupied extend the duration 
of that period in female rats.364,365 This temporal agree-
ment between activated/occupied PRs and expression 
of lordosis suggests that it is maintained by elevated lev-
els of occupied PRs, and that termination of lordosis is 
due at least in part to loss of these receptors.

Besides these correlational studies, a variety of 
techniques—injection of progestin antagonists, antisense 
oligonucleotides to PR mRNA and PR knockout (PRKO) 
strains of mice—has been used to demonstrate that PRs 
are essential for the facilitation of lordosis by progesterone. 
Systemic injection366,367 or intracranial application368 of a 
progestin antagonist inhibits the facilitation of lordosis by 
progesterone in rats and guinea pigs. However, because 
most antagonists are not completely specific, other tech-
niques have been used to test the necessity of PRs for 
progesterone function in sexual behavior. Infusion of 
antisense oligonucleotides to PR mRNA, which inhibits 
PR synthesis, into the cerebral ventricles369 or VMH370,371 
blocks facilitation of both appetitive sexual behaviors and 
lordosis by progesterone. Similarly a transgenic mouse 
strain with a targeted disruption of the PR gene (PRKO)372 
are completely unresponsive to progesterone for the facil-
itation of sexual behavior.373 Using PR isoform-specific 
KO strains of mice to determine the relative contribution 
of each PR isoform to progesterone-facilitated female 
sexual behavior, Mani et al.374 observed that progester-
one-facilitated lordosis was completely eliminated in the 
PR-A null mutant mouse, and PR-B null mutant mice 
showed a trend of suppression of progesterone-facilitated 
sexual behavior. Although the specific function of PR-B is 
unclear, the data collectively suggest that PR-A is essential 
for progesterone-facilitated lordosis, and both isoforms 
are required for optimal facilitation by progesterone.

The question of which ER is involved in up-regulation 
of PRs has received some attention. The ERα selective 
agonist, PPT, induces PR mRNA, at least in the VMH 
and ArcN.375 Although PR-ir induction in the brain by 
estradiol is dramatically reduced in ERαKO mice, KO 
of ERβ does not fully eliminate PR-ir induction.281,376 
Furthermore, genetic downregulation of ERβ (albeit in 
the incomplete ERβb KO mouse) was without effect on 
PR-immunoreactivity in the VMH. In subsequent work, 
in which it was confirmed that the ERα agonist, PPT, 
induces PR-ir in the VMH, it was also determined that 
the ERβ agonist, DPN does not. However, the sequential 
injection of an ERβ agonist after an ERα agonist induces 
PR immunoreactivity in more cells in the VMH than the 
ERα agonist alone.377 Based on experiments using BSA-
conjugates of estradiol, it has been suggested that mem-
brane ERs are also involved in the induction of PRs in 
the VMH.378 Collectively, these experiments point to a 
critical role for ERα, a possible role for a membrane ER, 
and a minor role for ERβ in the induction of PR immuno-
reactivity, at least in the VMH.

Membrane PRs and Nonclassic Mechanisms of P 
Action

The mechanism of action of progesterone is not as 
simple as activation of just PR-A and PR-B. Although the 
classic mechanism of hormone action plays an impor-
tant role in the regulation of sexual behavior, membrane 
mechanisms are also involved.379 Progesterone can also 
influence electrophysiology and facilitate sexual behav-
ior within seconds and minutes, respectively. Some of 
these effects may be referable to activation of cell surface 
PRs, ion channels and cytoplasmic second messenger sig-
naling cascades, and are independent of gene transcrip-
tion.380 Recently, membrane proteins unrelated to classic 
PRs have been characterized. The presence of membrane 
PRs (mPRs) and progesterone receptor membrane com-
ponent 1 (PGRMC1) and PGRMC2 in the brain342,381–384 
provides a possible mechanism by which progesterone 
could have rapid effects on behavior and neurophysiol-
ogy. mPRs are G-protein coupled receptor members of 
the seven trans-membrane adiponectin Q receptor fam-
ily, and come in at least three subtypes.385 In addition, 
PGRMC1 (also called 25Dx) is regulated by estradiol and 
progesterone in the VMH of female rats.343,381 Although 
the direction of the regulation is not consistent between 
the two reports,343,381 the hormonal treatments and 
methods used were quite different, which may explain 
the discrepancy.

PGRMC1, PGRMC2 and classic PR mRNAs are 
expressed at high levels and have a good deal of overlap 
in the mPOA and other hypothalamic nuclei and their 
projection sites.342 Under some conditions, progester-
one treatment results in an increase in PGRMC1 mRNA 
levels in the VMH and preoptic area.343 Likewise, mPRα 
and mPRβ are present within the hypothalamus and pre-
optic areas, among other areas, and estradiol increases 
the expression of mPRβ384 and the estrous cycle influ-
ences the expression of mPRα and mPRβ expression in 
some brain areas.383 Although the functional role of each 
of these putative membrane receptors in hormonal regu-
lation of sexual behavior remains to be determined, their 
presence in the brain suggests additional mechanisms 
by which progesterone could rapidly influence sexual 
behavior and possible interactions of mPRs and classic 
PRs within the same neurons.

Cross-Talk between Neurotransmitters and 
Steroid Hormone Receptors

Neurotransmitters Influence Concentrations of ERs 
and PRs

One of the most interesting aspects of the regulation 
of female sexual behavior is the interplay between exter-
nal factors and the internal hormonal milieu. Because 
of the critical role of steroid hormone receptors in the 
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mechanisms of action of steroid hormones on female 
sexual behavior, studies of integration between afferent 
information and steroid-hormone sensitive systems have 
focused on the regulation of these receptors. The finding 
that catecholaminergic activity influences the concentra-
tions of neural sex steroid receptors in rat and guinea 
pig brain386 suggested that stimuli from the environment 
might regulate the concentration of steroid receptors in 
neurons involved in female sexual behavior, and conse-
quently, behavioral response to hormones.

Drugs which either inhibit norepinephrine syn-
thesis (dopamine-β-hydroxylase (DBH) inhibitors) or 
which block noradrenergic receptors (e.g., α-adrenergic 
antagonists) typically decrease the concentration of ERs 
in some neural areas387,388 and/or inhibit induction of 
hypothalamic PRs by estradiol,389–391 and α-adrenergic 
agonists reverse this suppression. Noradrenergic antag-
onists also decrease female sexual behavior in guinea 
pigs.392 This, together with the finding that injection of 
an α1-noradrenergic antagonist, which decreases ER con-
centrations in the hypothalamus, also decreases female 
sexual behavior,393 suggests behavioral relevance of the 
neurotransmitter regulation of ERs. Finally, under some 
conditions, stimulation of DA receptors increases the 
concentration of ERs in the brain.394,395

A possible anatomical substrate for the integra-
tion between catecholaminergic neurons and steroid 
hormone-responsive neurons can be found in the cat-
echolaminergic innervation of some ER-containing 
neurons,396,397 and immunoreactivity for tyrosine 
hydroxylase and DBH, the enzyme that converts DA into 
norepinephrine (NE), varicosities are sometimes found 
closely associated with PR- or ER-immunoreactive neu-
rons in the mPOA and hypothalamus.398–400 The fact that 
those ER-immunoreactive cells with closely associated 
DBH-immunoreactive varicosities stain more darkly for 
ERs than other ER-immunoreactive neurons lacking this 
association suggests that noradrenergic input regulates 
the level of ERs in a population of these ER-immunore-
active cells,400 and consequently, behavioral responsive-
ness to estradiol. It should be noted that neurotransmitter 
regulation of steroid receptor levels is not limited to the 
catecholamines. For example, muscarinic agonists and 
antagonists regulate the levels of neural ERs.401

Defined anatomical connections may influence steroid 
receptor levels and therefore, presumably, sensitivity to 
steroid hormones for their influence on sexual behavior. 
For example, anterior roof deafferentation using knife-cuts 
in female rats increases the behavioral response to estra-
diol, presumably referable to the resulting increase in the 
concentration of ERs in the mediobasal hypothalamus.402 
Conversely, olfactory bulb removal results in an increase in 
the concentration of ERs in the MEA in female rats, presum-
ably related to the mechanism by which olfactory bulbec-
tomy increases sexual behavioral response to estradiol.403

Input from the social environment also regulates ste-
roid hormone receptors and hormonal response, presum-
ably via neuronal pathways. The odor of male prairie 
voles induces estrous behavior in female prairie voles,404 
presumably in part due to the accompanying increase 
in the concentration of ERs in the mPOA.405 Level of 
maternal care of pups induces long-term changes in the 
concentration of ERα in particular brain areas,406 due 
to epigenetic changes (see Chapter 52) in the ERα gene 
promoter.407 Likewise OT, injected systemically during 
the neonatal period, induces stable changes in the lev-
els of ERα in prairie voles.408,409 Therefore, regulation 
of steroid receptors by environmental stimuli working 
through neurotransmitters is another level of regula-
tion of steroid hormone response in subsets of relevant 
neurons.

Ligand-Independent Activation of PRs
Steroid hormone receptors, such as ERs and PRs in 

addition to being activated by binding of their cognate 
ligand, steroid hormone receptors can be activated by a 
variety of intracellular signaling pathways.410,411 Power 
et al.412 first demonstrated in vitro that DA agonists also 
can activate PRs in vitro, which led to studies on alter-
nate pathways to PR activation besides binding of pro-
gesterone, including pathways leading to the facilitation 
of sexual behavior in the absence of progesterone.

Intracerebroventricular infusion of D1 DA agonists 
substitute for progesterone in the facilitation of sexual 
behavior in estradiol-primed rats.413 This facilitation 
by DA agonists is blocked by infusion of progesterone 
antagonists,413 or antisense oligonucleotides directed at 
the PR mRNA,369 or in PRKO mice,373 providing strong 
evidence that DA facilitates the expression of sexual 
behavior by indirectly activating PRs in the brain in vivo.

Progesterone and DA both initiate second messen-
ger signaling cascades involving increases in 3′-5′-cyclic 
adenosine mono phosphate (cAMP) levels, activation 
of PKA and phosphorylation of the neuronal phospho-
protein, DA and cAMP regulated phosphoprotein-32 
(DARPP-32)414,415 (Figure 50.14). These in turn result 
in alterations in phosphorylation of other proteins and 
activation of PRs and/or its coregulators in the hypo-
thalamus. DARPP-32 KO mice express a decreased level 
of female sexual behavior in response to either proges-
terone or DA. This suggests that DARPP-32 is involved 
in ligand-independent activation of sexual behavior via 
PRs.414 These results demonstrate the obligatory role that 
activation of DARPP-32 plays in the regulation of sexual 
receptivity by PRs, regardless of the route of activation 
of the receptors.

The mechanism of ligand-independent activation of 
steroid receptors by neurotransmitters and second mes-
senger pathways provides a possible means by which 
afferent input from the male facilitates the expression 
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of sexual receptivity in the absence of progesterone. 
First some background information is necessary. When 
estradiol-injected, OVX or OVX/ADX rats are exposed 
intermittently to sexually active males, their level of 
sexual receptivity increases over the first few hours,179–

181,416–419 even if the ovaries and adrenal glands are both 
removed, presumably removing all sources of periph-
eral progesterone.418 Progestin antagonists block mating- 
enhancement,418 suggesting that the cellular mechanism 
by which the male’s mating attempts facilitates sexual 
behavior is via ligand-independent activation of PRs.418 
It should also be noted that mating-related stimulation 
results in phosphorylation of DARPP-32 in areas asso-
ciated with reproduction and reproductive behavior 
(mPOA, VMH, posterodorsal MEA, and BNST),420 and a 
D1 DA antagonist eliminates Fos expression in response 
to mating-related stimulation in all areas investigated.421 
Although the evidence supports ligand-independent 
activation of PRs as the mechanism for mating-enhance-
ment of sexual behavior, the possibility that neuropro-
gesterone is involved cannot be excluded at this time.422

Because sexual stimulation induces DA release,423–426 
immediate early gene response (Fos) in PR-containing 

neurons,427 and DARPP-32 phosphorylation in relevant 
areas,420 it is likely that mating-induced DA activates PRs 
via ligand-independent activation mechanism. The PR-
dependent, ligand-independent relationship is involved 
in the mechanism by which a variety of compounds that 
substitute for progesterone facilitates sexual behavior. 
GnRH,428 delta opioid receptors,429 α1-adrenergic recep-
tors,430 nitric oxide (NO),431 MAP kinase,429 PKA,432 
cAMP,428 and cGMP433 as well as prostaglandin E2428 and 
epidermal growth factor434 each facilitate sexual recep-
tivity in estradiol-primed rats by a process that involves 
activation of PRs. Likewise, ligand-independent activa-
tion of PRs may be involved in the mechanism by which 
methamphetamine enhances the effects of ovarian hor-
mones on female sexual behavior.435 Thus, many of the 
numerous signaling pathways that induce female sexual 
behavior in estradiol-primed rats converge on ligand-
independent activation of PRs.

Ring-A reduced metabolites of progesterone, 
5α-dihydroprogesterone and allopregnanolone, as well 
as 5β-reduced progestins, in addition to GnRH, and 
prostaglandin E2, facilitate lordosis in OVX, estradiol-
primed female rats.436–440 Because these progestins and 

FIGURE 50.14 Cross-talk between progesterone and a variety of second messenger pathways converging on the PR leading to increases 
in female sexual behaviors. This schematic representation depicts a variety of interacting mechanisms. (1) Progesterone acts via a classic genomic 
mechanism of action mediated by classic (primarily) nuclear PRs. The ligands bind to their cognate receptors and activate PRs promoting inter-
actions with coactivators; (2) Progesterone acts via second messengers (cAMP, cGMP) and signaling kinases (PKA, PKC, CaMKII), which then 
activate the MAPK signal transduction cascade, leading to phosphorylation of PRs and coactivators (CREB and/or its associated protein CBP 
shown here, as well as others); (3) Progesterone and progestins act via the Src kinase pathway to activate the MAPK cascade leading to activation 
of PR and coactivators. (4) Progesterone acts via the PKA/MAPK/DARPP-32 pathway to induce an increase in phosphorylation of PRs and/
or its coactivators. (5) Mating stimuli and D1 agonists may stimulate PKA activation, which then phosphorylates DARPP-32 or MAPK leading 
to the activation of PR and/or its coactivators. (6) Neuropeptides, nucleotides, prostaglandin E2, and other molecules may act through various 
receptor- and/or second messenger pathways (cAMP, cGMP, NO) to activate nuclear PRs or other transcription factors. *PR/*Coactivator signifies 
activated progestin receptor and coactivators. Dashed lines indicate hypothesized, but as yet unproven, direct interactions. Source: Reprinted from 
Mani and Portillo,415 with permission of Elsevier.
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hormones have relatively low or no affinity for PRs, it is 
unlikely that they facilitate lordosis by binding directly 
to PRs. However, facilitation of sexual behavior by 
these compounds is inhibited by a progestin antago-
nist, suggesting involvement of ligand-independent 
activation of PRs in the process by which they facilitate 
sexual behavior.432,437,441 Further, it has been suggested 
that via ligand-independent activation of PRs, they, 
like progesterone,442 then activate the Src/Raf/MAPK 
signaling pathway resulting in lordosis.440 Therefore, 
even some progestins may facilitate the expression of 
sexual receptivity by ligand independent activation of 
PRs after which they converge on a signaling pathway 
in common with a pathway involved in facilitation by 
progesterone.

As mentioned earlier, progesterone facilitation of 
sexual behavior is dependent on the PR-A isoform. In 
contrast, ligand-independent activation of sexual behav-
ior by a D1 DA agonist is reduced, but not eliminated 
in either PR-A or PR-B KO strains of mice.374 Therefore 
ligand independent activation of sexual behavior is 
dependent on both isoforms. Sexual behavior facilitated 
by the PKA activator, 8-bromo-cAMP, is eliminated in 
PR-A KO mice. Therefore, each isoform is involved in 
the facilitation of sexual behavior, but the importance 
of each isoform may depend on the mode of activation. 
Although PR-A seems to have the primary role in most 
situations, PR-B has a larger role in ligand-independent 
activation of sexual behavior.

The fact that many neurotransmitters can both influ-
ence steroid receptor levels and activate steroid receptors 
raises questions in the interpretation of many pharmaco-
logical studies. Pharmacological experiments performed 
with the assumption that the drugs are stimulating or 
antagonizing output of steroid hormone-sensitive neu-
rons. However, it is likely that some of the drugs are 
influencing steroid receptor-containing neurons, either 
activating steroid hormone receptors directly or regulat-
ing the concentration of receptors.

Ultrastructural Changes Induced by Estradiol 
and Progesterone

Hormonal Regulation of VMH Structure
The VMH is well established as a key site in the control 

of female sexual behavior by ovarian steroid hormones, 
as it has been extensively studied in rats, as discussed 
above. It should be noted that the borders of the VMH 
as defined by Nissl stain may not perfectly match the 
distribution of typical VMH markers, such as ERs, in 
some species. Nevertheless, the term “VMH” is useful 
as referring to a brain region with functional similarities 
across vertebrates, even if its borders and connectivity 
differ somewhat in various species.

Hormone-induced changes in VMH structure must be 
understood within the context of the VMH local circuit, 
which comprises several cell types. Unfortunately, pheno-
typic markers for these cell types are only partially defined 
(Table 50.2), and the direction of information flow between 
these cell types is not yet known. One cell type expresses 
nuclear ERα and estradiol-induced PR. Given that many 
studies have used nuclear labeling to identify the ERα-
expressing cells, it remains unclear whether these same 
neurons also mediate the membrane-based effects of estra-
diol discussed above. Given that these neurons express 
OT receptors, their long dendrites manifest an estradiol-
induced increase in synapses, as discussed below.

A second cell type, are neurons with axonal connec-
tions to the periaqueductal gray,443,444 a critical relay in 
the control of the lordosis reflex. A small subset of PAG-
projecting neurons expresses steroid receptors (15–25%). 
These neurons have a more elaborate dendritic tree, and 
estradiol treatment reduces spines on the long dendrites 
of these neurons.

A third cell type within the VMH is defined in 
part by the lack of ERα and axonal projections to the 
midbrain, and the presence of mating-induced Fos 
expression427,444,445 These neurons exhibit a robust estra-
diol-induced increase in dendritic spines. In summary, 
the VMH microcircuit includes at least three cell types 
that exhibit differential patterns of neural plasticity after 
estradiol treatment.

Recent insights into the ovarian hormone-induced 
remodeling of neural circuits within the VMH in adult 
female rats provide insights into the neurological control 
of this behavior. It is worth noting that estradiol-induced 
synaptic changes have been observed in a number of 

TABLE 50.2 Phenotypic markers of Three Types of neurons in 
the VmH local Circuit

Cell Type Features

ER/PR expressing neurons Glutamatergic
Co-express enkephalin
Dendrite arbor not known
Weakly activated by mating
Express oxytocin receptors
Estradiol increases 
synapses on LPDs

PAG projecting Transmitter not known
Five to six dendrites
Weakly activated by mating
Estradiol reduces LPD 
spines (length)

“Unidentified” (lack ER/PR and  
no projections to the PAG)

Transmitter not known
Three dendrites
Activated by mating
Estradiol increases spines on 
short dendrites
Estradiol reduces LPD length
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other brain systems that are not directly tied to sexual 
behavior. These include the hippocampus446 and the 
PFC.447 Thus, it seems that estradiol’s effect on synaptic 
organization in the VMH represents a typical mode of 
action for this hormone.

Estradiol has global structural effects on neurons in 
the VMH. Hours after OVX animals are treated with 

estradiol the size of neuronal cell bodies is increased, 
based in part on the hypertrophy of the nucleus, rough 
endoplasmic reticulum, and Golgi apparatus.448 In addi-
tion, estradiol changes several parameters within the 
dendritic arbor (Figure 50.15). The size and shape of a 
dendritic tree are indicative of its ability to sample and 
weight afferent inputs. Neurons in the VMH exhibit 
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FIGURE 50.15 Complex effects of vehicle (VEH), estradiol (EB), or EB and progesterone (EBP) on the dendritic arbor of VMH neurons. 
Golgi impregnation and electron microscopy studies show that estradiol increases spines on short primary dendrites (Panel A); reduces dendritic 
spines on long primary dendrites of projection neurons (Panel B); decreases branches on long primary dendrites (LPD) (Panel C); retracts long 
primary dendrites (Panel D); selectively removes oxytocin (OT)-negative dendrites from the lateral fiber plexus (Panel E); and increases innerva-
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Griffin and Flanagan-Cato,450 and Griffin et al.451) vlVMH, ventrolateral VMH; dlVMH, dorsolateral VMH.
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simple dendritic arbors, usually with three or four den-
drites. Based on studies using various techniques to quan-
tify neuronal morphology in intact estrous cycling rats 
and OVX females given ovarian hormone replacement, 
the number of dendritic spines correlates with hormonal 
states that increase reproductive behavior.449,452–454 Thus, 
estradiol treatment increases local excitatory input onto 
VMH dendrites (Figure 50.16).

At the same time, long dendrites retract from the lat-
eral afferent zone, a process that is reversed with subse-
quent progesterone treatment. This regulation of VMH 

dendrite length was first observed with Golgi analysis450 
and subsequently confirmed with electron microscopy 
analysis.451 Ultrastructural evidence suggests that non-
OT receptor-bearing dendrites retract, allowing for the 
transfer of afferent inputs to the OT-bearing dendrites.455 
Thus, estradiol treatment appears to simultaneously 
heighten local excitatory input and direct extranuclear 
afferent input to the OT-sensitive neurons, suggesting 
a substantial hormone-dependent shift in the computa-
tional activities of VMH neurons and their outputs that 
control sexual behavior (Figure 50.16, bottom).

FIGURE 50.16 Top left: Confocal projections of representative female rat VMH dendrites illustrating the effect of estradiol treatment to 
increase the number of spines. Arrows indicate the locations of representative spines. Scale bar = 10 μm. Abbreviations: VEH, vehicle; EB, estradiol 
benzoate. Top right: Mean spine densities from vehicle- and EB-treated rats in the ventrolateral (vl) and dorsal regions of the VMH. *p < 0.05. Bot-
tom: Model of possible mechanisms of spine induction by estrogen on short primary dendrites in the VMHvl. The output of the increased action 
of intrinsic afferents would be to increase the activation of the periaqueductal gray (PAG) to reach a critical threshold for lordosis to occur. Source: 
Reprinted from Calizo and Flanagan-Cato,449 with permission from the Society for Neuroscience.
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An important projection from the VMH terminates 
in the ventrolateral PAG,456 a critical relay in the motor 
control of lordosis behavior. Estradiol treatment induced 
remodeling of synaptic organization in this region as 
well.457 In particular, estradiol treatment increases the 
number of synapses and the number of dense-core vesi-
cles per synapse. As mentioned above, ERα is abundant 
in the PAG. To date, little is known about hormone-
induced plasticity in the medullary reticular formation 
or spinal motor neurons, although in the cat estradiol 
increases the innervation of the nucleus retroambiguus 
to the lumbar spinal cord.458 It would not be surprising if 
dendrite structure in the lumbar ventral horn were also 
changed. Thus, ovarian hormones may promote lordosis 
by modifying the connections between several nodes in 
the descending lordosis pathway.

The relevance of synaptic reorganization of the VMH 
in human sexual behavior has been not been studied 
due to obvious technical and ethical limitations. How-
ever, hormone-induced regulation of VMH dendrite 
length has been documented in other rodents, namely 
hamsters459 and prairie voles,460 which indicates that it 
is not a phenomenon unique to rats. Studies in nonhu-
man primates would be helpful to assess the possible 
relevance to sexual behavior in women. The synaptic 
reorganization that has been observed with structural 
studies is associated with altered activity of VMH neu-
rons (discussed below).

Genitosensory Stimulation Activates Cells with 
Steroid Hormone Receptors

Many of the cells that respond to mating-related stim-
ulation also contain ERα-ir444,445 and/or PR-ir427 sug-
gesting that they are part of the neuronal substrate for 
integration of hormonal signals with afferent input from 
the social environment. Mating- or VCS-induced Fos is 
extensively coexpressed with ERα-ir in the mPOA, bed 
nucleus of stria terminalis, posterodorsal MEA, mid-
brain central gray445 and VMH.444,445

Although other areas were not investigated, exten-
sive coexpression of Fos with PR-ir is seen in the mPOA, 
parts of the VMH, and the ArcN.427,461 Within the VMH 
(primarily rostral), mating induces Fos-ir in a number 
of PR-ir cells that project to the midbrain central gray462 
consistent with a role for these neurons in female sexual 
behavior. The fact that they are responsive to mating 
stimulation and express PRs suggests that they may be 
a substrate for interaction between mating stimulation 
and PRs.

In some, but not all cells, VCS-induced Fos expres-
sion in estradiol-primed, OVX rats requires PRs, sug-
gesting that ligand-independent activation of PRs is an 
obligatory step in the activation of the c-fos gene.418,461 
Although progestin antagonists block VCS-induced Fos 

expression in the mPOA, medial bed nucleus of stria 
terminalis, and caudal VMH, they were without effect 
in other areas studied, including the MEA, dorsome-
dial hypothalamus and PVN. Interestingly, a progestin 
antagonist blocks VCS-induced Fos expression in the 
rostral, but not caudal, mPOA.461 Collectively, the data 
support the interpretation that in cells expressing PRs, 
VCS induction of Fos expression requires functional 
PRs; that is to say, neuronal response to particular stim-
uli seems to be gated by PRs. The mechanism is likely 
to be ligand independent activation of those PRs by the 
afferent input. Although olfactory stimuli are of great 
importance to reproduction and sexual behavior, unlike 
VCS-induced Fos expression427 the neurons in which 
exposure to bedding soiled by male rats induces Fos 
expression do not contain PR-ir.463

In a study of responses of ERα and ERβ cells to 
mounts with and without intromission, Gréco et al.464 
reported that either mounts alone or mounts with intro-
missions induced Fos in ERα-ir cells within the rostral 
mPOA. However, Fos expression in ERα/ERβ coexpress-
ing cells was induced only by mounts with intromis-
sion. The pattern in the amygdala was different. In the 
dorsal posterodorsal MEA, only mounts that included 
intromission induced Fos expression, and it did so only 
in ERα or in ERα/ERβ coexpressing cells, not in cells 
expressing only ERβ. In the ventral posterodorsal MEA, 
only mounts with intromission induced Fos expression, 
but the response was restricted to ERβ cells, but not cells 
expressing ERα. Although work in ERKO mice suggests 
primary involvement of ERα in female sexual behavior, 
these results suggest roles for both forms of ERs in inte-
gration of hormonal information and information relat-
ing to specific types of sexual or genital stimulation.

ARs and Aromatase

Androgens, principally testosterone and 5α-DHT, 
exert their effects by activating a specific AR. Thus 
far, a single subtype of AR has been described, a clas-
sic member of the steroid receptor superfamily, a hor-
mone-activated transcription factor, with the canonical 
functional domains of proteins in this superfamily. 
Thus, upon ligand binding, AR undergoes phosphoryla-
tion, homodimerizes, interacts with DNA, and binds to 
androgen response elements. Transcriptional machinery 
and cofactors are then recruited to the site to promote 
or repress gene expression. In addition to this standard 
genomic mechanism, AR is found in dendrites and 
axons, suggesting short-term effects on neurotransmis-
sion.465,466 Some brain regions respond to testosterone by 
converting it to estradiol, via the enzyme aromatase, also 
known as cytochrome P450 enzyme. Aromatase is found 
in the smooth endoplasmic reticulum of some popula-
tions of neurons. Thus, aromatase activity would direct 
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circulating testosterone to act via ERs rather than AR. 
Therefore, the expression of both AR and aromatase will 
be considered for a full view of testosterone action in the 
female brain.

Multiple techniques and animal models have helped 
describe the distribution of ARs in the vertebrate brain, 
including rats, mice, hamsters, and nonhuman primates; 
however, there is surprisingly limited information 
focused on adult female mammals. Available evidence 
suggests that females and males have similar neuroana-
tomical distributions of AR, with somewhat different 
levels in females. Table 50.3 includes a listing of the brain 
regions with the highest levels of ARs, based on these 
studies.

The first studies delineating the anatomical distribu-
tion of testosterone binding used steroid receptor auto-
radiography with 3H-testosterone injected systemically. 
Abundant testosterone binding was reported in the pre-
optic area, amygdala, and especially the VMH, in female 
rats467,468 and female rhesus monkeys.469 The molecu-
lar cloning of AR led to the development of antibodies 
that could be used in immunocytochemical procedures, 
although initial reagents were plagued with conflicting 
results. The messenger RNA for AR has been mapped 
with in situ hybridization techniques,269 and these results 
nicely complement the distribution described with auto-
radiography. Studies in juvenile females indicate that 
AR mRNA is abundant in several brain regions associ-
ated with female reproductive behavior, including the 
lateral septum, BNST, mPOA, and VMH.470 Although it 
has not been studied extensively, it appears that in some 
brain regions that co-express AR and ER, many neurons 
express AR only, but most neurons that express ER co-
express AR.471

As with AR, most studies on aromatase in the brain 
have focused on developing males rather than adult 
females, but some basic information exists. Aromatase 
has been documented with in vitro enzyme activity 

assays of discrete brain regions, including the BNST, 
mPOA, MEA, and VMH.472 This analysis also compared 
the levels of aromatase and AR in adult females. A strik-
ing finding was that AR binding activity is highest in 
the VMH, where aromatase activity is the lowest. The 
relatively low level of aromatase activity in the VMH is 
reflected in relatively low levels of aromatase messenger 
RNA.473 This finding suggests that in the VMH testos-
terone may be more likely to act through the AR than 
the ER in females. Ovarian hormones do not regulate 
aromatase activity in female rat brains.474 Overall, tran-
scripts for aromatase are found in the BNST, the mPOA, 
the MEA, and the VMH in females.475

In summary, ARs are expressed in the female brain, 
including in brain regions that promote female sexual 
behavior. Although some brain regions may convert 
testosterone to estradiol, androgen-specific actions that 
affect female sexual behavior seem likely, especially in 
the VMH. Although not well studied yet, it is possible 
that 5-alpha reductase is also expressed in the VMH in 
female mammals, as it is in green anole lizards.476 This 
enzyme converts testosterone to the more potent andro-
gen, DHT. If so, females would have the potential to 
compensate for their relatively low circulating levels 
of testosterone by locally enhancing androgen action. 
Although there is little information about the role of 
androgens in female sexual behavior, ARs appear to be 
poised to contribute.

Hormone Replacement Therapy in Women

A decline in sexual arousal, desire, and/or activity 
occurs following surgical and natural menopause. Surgi-
cally menopausal women, induced by bilateral oophorec-
tomy with or without hysterectomy experience a sudden 
and drastic decline in sexual desire and arousal.126–129 
Significant improvement in desire and arousal occur 
following adequate hormone replacement regimens, 

TABLE 50.3 Brain Regions Involved in Female Sexual Behavior that Contain dominant ER Subtypes, AR, and/or Aromatase 
Expression

ER-Alpha ER-Beta Both AR Aromatase

Amygdala Amygdalohippocampal area Medial nuclei Medial nuclei Medial nuclei

Cortical nuclei Cortical nuclei Cortical nuclei

Septum Subfornical organ BNST BNST BNST

Lateral septum

Hypothalamus mPOA PVN mPOA mPOA mPOA

AVPV

ARC ARC

PVN PVN

VMH VMH VMH
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particularly replacement with exogenous estrogens in 
combination with testosterone126,127,131,133,135–139 relative 
to estrogen treatments alone. Although co-administra-
tion of estrogens and progestins (notably medroxypro-
gesterone acetate) also increased sexual arousal and 
desire, this formulation increased overall risk for sec-
ondary disease factors in the Women’s Health Initiative 
randomized trials.477

An unresolved question is how co-therapy with estro-
gens and androgens works and why it offers greater 
therapeutic value over estrogen replacement alone. 
There are at least three possible scenarios. The first is that 
the induction of SHBGs by exogenous estrogens would 
likely decrease free estrogen concentrations, thereby lim-
iting their ameliorative action in the brain and periph-
ery. The addition of androgens like testosterone to this 
would compensate by binding to SHBGs with higher 
affinity, thus allowing more free estrogens to get to tar-
get tissues. The second possibility is that testosterone 
induces actions on its own through binding to ARs in the 
brain and periphery. Indeed, a significant proportion of 
untreated postmenopausal women reported increases in 
sexual desire and activity following double-blind admin-
istration of testosterone for 6 months through a trans-
dermal patch that released approximately 300 μg/day  
of testostereone.137 This treatment increased free testos-
terone to within normal physiological premenopausal 
levels without any concomitant increases in plasma 
estradiol or SHBG levels. Placebo control conditions did 
not induce this increase. These data suggest that tes-
tosterone alone is able to reverse the decline in sexual 

arousal and behavior in postmenopausal women. How-
ever, the presence of aromatase in the brain could con-
vert exogenous testosterone into estradiol locally in 
different hypothalamic or midbrain regions, despite 
no increases in plasma estrogens. Long-term OVX rats 
treated systemically with the aromatase inhibitor fadro-
zole and given hormone replacement with the combina-
tion of estradiol and testosterone displayed significantly 
greater numbers of appetitive solicitations and lordosis 
responses compared to females given the combination of 
estradiol and testosterone alone (Figure 50.17). Females 
treated with estradiol alone displayed low numbers of 
solicitations and lordosis responses.478 Thus, blocking 
the aromatization of testosterone into estradiol induces 
a greater facilitation by testosterone of both appetitive 
and consummatory aspects of female sexual behavior 
relative to estradiol alone or the combination of estradiol 
and testosterone. This suggests strongly that testosterone 
acting at ARs facilitates female sexual behavior. The final 
possibility of course is that both testosterone and estra-
diol exert distinct actions on ARs and ERs, respectively, 
that combine to facilitate sexual desire and behavior.

NEURAL ORGANIZATION

As mentioned above, sexual behavior has a begin-
ning, middle, and end, each of which is controlled by 
different, but integrated, brain systems. The function of 
many of those systems is altered by steroid hormones, 
such that sexual incentive stimuli come to the foreground 

FIGURE 50.17 Hops and darts (A), 
solicitations (C), defensive responses (B), 
and lordosis reflex magnitudes (D) of 
OVX rats primed with estradiol benzo-
ate (EB) alone, EB + testosterone propio-
nate (TP), or the combination of EB + TP 
along with the aromatase inhibitor 
fadrazole to block conversion of testos-
terone to estradiol, thus augmenting the 
effect of the exogenously-administered 
TP on behavior. (Source: From Rosenbaum, 
Jones, and Pfaus.478) **p < 0.05, ***p < 0.01, 
from the EB + TP + FAD-treated rats.
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of attention and action. These neural systems must be 
able to process rudimentary sensory components of 
sexual stimulation (e.g., olfactory, visual, somatosen-
sory, auditory), and sum them into Gestalts or “wholes” 
that represent contextual and/or discrete unconditioned 
incentives (e.g., suitable receptive partners, partner 
odors, individual facial features, etc.) or unconditioned 
inhibitors (nonreceptive partners, predators, or parents, 
or competing incentives like food if hungry), and do the 
same for conditional incentives or inhibitors (e.g., neu-
tral cues that become predictors of the unconditioned 
incentives, e.g., a favorite sex toy, odor or place cue 
associated with sexual reward, or inhibitors, e.g., same 
stimuli associated with thwarted sexual behavior or 
sexual nonreward). They must be able to compute com-
petent responses to those cues so that sexual behavior 
is timed correctly and appropriate to the circumstances, 
and automate those responses so that they become more 
optimal with experience (e.g., faster initiation of solicita-
tions in the presence of highly valued partner cues). At 
each level of analysis, there are excitatory and inhibitory 
neurochemical systems that regulate the intensity of the 
perceived incentive or inhibitory stimuli and that modu-
late the timing and intensity of the responses.35 These are 
also modulated by steroid hormones and by feedback  
from positive and negative sexual experiences (see Section  
 Consequences of Sexual Stimulation).

Excitation, Inhibition, and Disinhibition  
of Sexual Responses

The notion of separate, but interactive, neural sys-
tems for behavioral excitation and inhibition (Figure 
50.18) goes back to the work of early neurophysiologists 
like Sechenov, Sherrington, and Pavlov, and more mod-
ern psychologists like Gray, who applied the idea to the 
study of fear and anxiety.480 It has important implica-
tions for sexual behavior because it posits that behavior 
can commence either due to direct excitation or through 
a process of disinhibition. This concept was advanced 
further by Bancroft and Janssen481 and Perelman,479 who 
presented dual control models of human sexual response 
in which the net expression of sexual behavior is based 
on the influence of excitatory and inhibitory mechanisms 
in the brain and periphery, set around a “sexual tipping 
point”. As in Gray’s theory, this model stressed the adap-
tive nature of both excitatory and inhibitory processes. 
For example, the adaptive nature of sexual excitement 
would drive individuals to seek out sex partners for 
reproductive or reward purposes. The adaptive nature 
of sexual inhibition would guard against situations that 
threaten the individual, including chronically stressful 
life events. It would also be important to keep the optimal 
expression of behavior constrained to the “right time”, as 
in the case of females that display sexual behavior only 

during a periovulatory period, when they are most likely 
to become pregnant. Bancroft and Janssen viewed the 
propensity for sexual excitement or inhibition as an indi-
vidual tendency based on the genetic makeup and/or 
behavioral expectations of the individual: Those whose 
propensity for central inhibition of sexual response is too 
high have increased vulnerability to sexual dysfunction, 
whereas those whose inhibitory propensity is too low 
would be more likely to engage in hypersexual or high 
risk sexual behavior. Indeed, the study of sexual inhibi-
tion is also critical if we are to understand how certain 
events or drugs like alcohol, cocaine, or amphetamine, 
may induce sexual disinhibition and the propensity to 
engage in risky sexual behaviors.482

Excitation
We may view excitation from autonomic arousal and 

genitosensory/erogenous stimulation as a “bottom-up” 
phenomenon in which individual sensory modules come 
together at higher levels of processing. This occurs in the 
thalamus, but also in each domain of the hypothalamus, 
limbic, system, and cortex, that make up the excitatory 
sexual system of the brain.35 At the hypothalamic level, 
genitosensory and olfactory information is integrated in 
both the mPOA and VMH, which have outputs to the 
PVN, SON, and ArcN of the hypothalamus. In turn, 
those regions control the release of OT, vasopressin 
both in brain and from the posterior pituitary, and the 
release of melanocortins (MCs), opioids, and corticotro-
phin releasing factor (CRF) from the anterior pituitary. 
The mPOA also sends lateral efferents to the VTA, which 
stimulate DA neurons and DA release in mesolimbic 
and mesocortical terminals, such as the NAc, ACC, lat-
eral septum, corticomedial amygdala, and mPFC. Thus, 
the mPOA is well situated to “drive” the DA-mediated 
incentive motivational system in the presence of salient 
unconditional and conditional external sexual cues, and 
also to register and perhaps link those cues to genitosen-
sory and autonomic input. In addition, noradrenergic 
inputs to the hypothalamus coming from the locus coe-
ruleus are themselves stimulated by the reticular activat-
ing system, which is stimulated by general autonomic 
and somatic inputs from the spinal cord. For females, 
sensitivity to sexual arousal is enhanced during ovula-
tion, and thus excitatory systems in the CNS appear to 
require steroid hormone priming.

Estradiol regulates a variety of neurotransmitter 
and second messenger systems in brain areas involved 
in sexual behavior.483,484 Estradiol priming induces the 
synthesis of α1B-adrenergic receptors in the VMH485,486 
and augments the release of DA in the striatum, NAc, 
and mPOA during copulation.90,425,487,488 Extracellular 
DOPAC (3,4-dihydroxyphenylacetic acid), a DA metab-
olite, increases in the mPOA in the afternoon to the 
early evening of proestrus, around the time that sexual 
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behavior is activated.482,489 DA is also released within 
the mPOA in OVX females treated with EB and proges-
terone, however this release is not detected in females 
treated with EB alone.424,490 Hormone dependent differ-
ences also occur with the application of DA agonists to 
the mPOA, such that in females primed with EB-alone, 
D2 receptor subtype agonists facilitate sexual behavior, 
whereas in EB + progesterone primed females D1 recep-
tor subtype activation facilitates sexual behavior.482,491,492 
Tonic DA release activates D2 receptors, whereas phasic 
DA release stimulates D1 receptors. Thus, priming with 
EB-alone may tonically activate D2 receptors, whereas 
subsequent progesterone administration may stimulate 
phasic DA release within the mPOA, and activate D1 
receptors, to facilitate sexual behaviors. Estradiol also 
stimulates the synthesis of MC type four receptors in 
the hypothalamus493 and synthesis of proopiomelano-
cortin (POMC) in ArcN neurons494 and stimulates the 

synthesis of cholinergic receptors and enkephalin within 
the VMH.495,496 GABA and glutamate activation are also 
stimulated by estradiol in these regions (see below).

Inhibition
Inhibitory synapses make up a large part of the CNS, 

and local inhibitory networks can hone a response by 
eliminating competing responses that would interfere 
with it (e.g., as happens in the visual system with lateral 
inhibition by amacrine cells497). Such inhibition can be 
observed when behavior comes in bouts or phases, or 
in Masters and Johnson’s EPOR model would be con-
sonant with the “R” phase, a period of postorgasmic 
refractoriness in which further sexual interest is dimin-
ished.21 Local inhibition can also play a role in the timing 
of behavior to make it occur only during optimal peri-
ods. Female desire and lordosis behavior are obvious 
examples, and the role of steroid hormones may well be 
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FIGURE 50.18 Dual control model of sexual excitation and inhibition around a “sexual tipping point”. Activation of excitatory neurotrans-
mitters, such as dopamine (DA), norepinephrine (NE), oxytocin (OT), and melanocortins (MCs), within midbrain, hypothalamic, and limbic 
regions occurs in response to steroid hormones, sexual incentive cues, and sexual stimulation. Activation of inhibitory neurotransmitters, such as 
serotonin (5-HT), opioids, and endocannabinoids (ECBs) in cortical, limbic, hypothalamic, and brainstem regions occurs during and after orgasm 
or in response to stress or aversion, resulting in a net decrease in excitatory tone. Source: Adapted from Perelman479 and Pfaus.35
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to suppress the behavior during reproductively nonopti-
mal (nonovulatory) periods.

General behavioral inhibition, however, is typically 
viewed as a “top-down” phenomenon involving the 
cognitive process of “executive function”.498 Animals 
always have to choose among different drives and moti-
vations (e.g., between feeding and copulation), and 
indeed between several possibilities per motivational 
system, to achieve an optimal outcome. The mPFC 
organizes this by creating behavioral hierarchies based 
on expectancies, planned actions, and calculations. The 
mPFC, (and likely other cortical areas) therefore, must 
inhibit a complex and ongoing interplay of motor ten-
dencies to arrive at planned and sustained actions. Peo-
ple or rats with disrupted prefrontal function, either due 
to lesions or neurochemical imbalance, have great dif-
ficulty focusing attention on tasks, are unable to inhibit 
competing responses, and experience retroactive and 
proactive interference.498 With regard to sexual behavior, 
such top-down inhibition can be activated as “ morality” 
and would be based on a cultural value  system that 
imposes “right” and “wrong” on certain behaviors, such 
that some that feel good are “right” and can be expe-
rienced without guilt, whereas others are “wrong” and 
carry the weight of guilt and/or rule of law against 
them.28,35 This type of inhibition gives rise to the classic 
“approach-avoidance” conflict, where the expectation of 
reward drives the desire, but the inhibition imposed by 
the real or perceived aversive consequences of engaging 
in sexual activity blunts the initiation of behavior. Such 
inhibition may well lie at the root of the inhibited sexual 
response experienced by women who are not taught to 
express their sexual desires without some form of guilt. 
Such inhibition would likely be reinforced if women 
experienced sexual nonreward during copulation, and 
such reinforced inhibition would likely overlay itself 
on desire components to suppress them directly. Some 
women may be more susceptible to this type of inhibi-
tion than others. Accordingly, the “prosexual” nature of 
drugs such as alcohol, cocaine, and methamphetamine 
may be a function of their ability to disinhibit such sup-
pressed sexual responding.

Refractory inhibition that comes after orgasm involves 
the activation of at least three neurochemical systems: 
opioids that induce pleasure, euphoria, and ecstasy; 
endocannabinoids that induce sedation; and serotonin 
that induces satiety.35 The reward states induced by CLS, 
VCS, or paced mating in rats appear to be independent 
of steroid hormone priming, although the priming is 
necessary to activate the excitatory systems that bring 
about the behavior in the first place.28,162 At present it is 
not known where such inhibition actually takes place. 
Indeed, the mPOA and VMH have receptors for all three 
transmitter systems, indeed for all three opioid systems. 
Activation of delta opioid receptors in the mPOA inhibit 

lordosis,499 whereas activation of mu opioid receptors in 
the VMH inhibits lordosis.485 Inhibition also comes in 
the form of estrus termination. This is discussed in more 
detail below.

Disinhibition
As noted above, certain prosexual drugs can disin-

hibit sexual responding, but only in individuals with 
sexual inhibition. This has been modeled in male rats.90 
Male rats trained not to copulate with sexually non-
receptive females will attempt copulation with them 
under the influence of alcohol. Cocaine, amphetamine, 
and methamphetamine can do the same in males,482 
and Frohmader et al.490 provided evidence that meth-
amphetamine could do this after males were inhibited 
from making sexual approach responses toward scented, 
sexually receptive females using LiCl-induced gastro-
intestinal distress as the inhibitory outcome. Alcohol 
and cocaine stimulate appetitive behaviors in females 
primed with estradiol alone.482 Intermittent amphet-
amine or methamphetamine administration sensitizes 
sexual approaches and solicitations in female rats435,500 
and increases Fos activation in the MEA and VMH fol-
lowing copulation.435 However, methamphetamine 
treatment also makes female rats less selective in prefer-
ence for particular males.501

Disinhibition may also occur as a function of hormone 
priming. Systems that normally maintain inhibition over 
female sexual behavior during nonovulatory periods 
likely must be inhibited to allow the behavior to occur. 
This appears to be the case for some systems in the VMH 
that help to time the behavior and that help to bring 
about estrus termination (see below). Thus the brain is 
set up with modules that gather and interpret sensory 
input and generate competent motor outputs at optimal 
times. This allows reward systems to be activated when 
females engage in the right behaviors at the right times, 
and allows such behavior to optimize the reproductive 
outcomes. The fact that paced copulation is both reward-
ing to females and results in stronger copulatory stimula-
tion from males, leading to a greater chance of successful 
impregnation, is a good example of the intricate timing 
systems that blend the two. Far more is known about the 
neural and neurochemical control of lordosis than appe-
titive sexual approach, solicitation, or pacing behaviors. 
These are outlined below.

Sexual Approach Behaviors

Mesolimbic DA is involved in the sensitization and 
crystallization of incentive responding,38 especially 
within terminals in the NAc. Microdialysis studies have 
shown that DA in the NAc increases during copulation 
in OVX female rats or hamsters primed fully with EB and 
progesterone. In rats the increase is approximately 150% 
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of baseline when females are presented with a gonad-
ally intact, sexually vigorous male rat behind a screen, 
and increases to approximately 180% when the screen is 
removed and copulation ensues.488 The temporal reso-
lution of microdialysis (e.g., 10-min samples), however, 
does not permit specific behaviors to be correlated with 
the rise in DA especially during copulation. However, 
the degree of release is positively correlated with the 
number of attempts made by the female to nose-poke 
through the wire-mesh divider. DA release increases 
more in the NAc and dorsal striatum in hormonally-
primed females that must make an operant response to 
gain access to males compared to females that do not,487 
suggesting that mesolimbic and striatal DA release helps 
orient the female toward a sexually active male and 
make approach responses in anticipation of sexual stim-
ulation and reward.

Solicitations

The pioneering work of Wallen et al.,57 McClintock,50 
and Erskine49 refined Beach’s39 general category of “pro-
ceptive” behaviors in female macaques and rats into 
species-specific descriptions of sexual approach, solicita-
tion, and pacing. In rats, solicitations could be defined 
as full (headwise orientation to the male followed by a 
runaway) or partial (hops and darts, and perhaps also 
ear-wiggles) depending on how close in proximity the 
female was to the male, and whether she had room to 
run away (e.g., Figure 50.5). Pacing could be operation-
alized as an intermount or inter-intromission interval 
imposed by the female, and could be assessed in open 
fields or as exits and returns to the male’s side in a uni-
level pacing chamber (e.g., Ref. 49), or level changes per 
mount or intromission in bilevel pacing chambers (e.g., 
Ref. 75). Female mounting of sexually sluggish or naïve 
males was considered by Beach106 to be a “super-solici-
tation behavior” that would allow females to “show” the 
male what they wanted. Such behavior has been stud-
ied extensively in rats using sexually experienced OVX 
females primed with EB alone or EB + progesterone and 
given access to castrated male rats.221,502–504

Hoshina et al.505 were the first to show that axon-
sparing excitotoxic lesions of the mPOA abolished both 
full and partial solicitations, but enhanced lordosis, in 
sexually-experienced OVX rats primed with EB and 
progesterone. Lesions of the mPFC inhibited the tem-
poral patterning of full solicitations, disrupting the run-
away component.506 In contrast, lesions of the lateral 
septum or VTA did not alter the frequency of hops and 
darts.507,508 Lesions of the mPOA, VMH, or MEA, abol-
ished the mounting of sexually sluggish males in OVX 
rats primed with EB + progesterone, whereas crystalline 
implants of estradiol to the VMH, but not the mPOA or 
MEA, induced the behavior in OVX rats.221

Role of Incertohypothalamic DA
As with lesions of the mPOA, systemic administration 

of DA antagonists such as haloperidol abolish solicita-
tions but augment lordosis.509,510 This effect does not 
appear to be mediated by mesolimbic DA, as 6-OHDA 
lesions of VTA DA neurons projecting to the NAc did 
not alter solicitations in small chambers.511 However, 
DA in the mPOA plays a key role in the stimulation of 
solicitations, with D2 receptor activation facilitating 
solicitations in OVX rats treated with EB alone, and D1 
receptor activation facilitating solicitations in OVX rats 
treated with EB and progesterone.491,492 DA projections 
to the mPOA originate in the zona incerta (ZI). DA turn-
over in the ZI increases with estradiol administration.512 
Extracellular DOPAC, a DA metabolite, increases in the 
mPOA in the afternoon to the early evening of proestrus, 
around the time that sexual behavior is activated.489 DA 
is also released within the mPOA in OVX rats treated 
with EB and progesterone, but not in rats treated with EB 
alone.81,160,424,513 Infusions of SCH-23390, a D1 antago-
nist, to the mPOA of OVX rats primed with EB + proges-
terone significantly reduced solicitations selectively.492

Role of MCs
MCs like α-melanocyte stimulating hormone (α-MSH) 

are derived from POMC, a precursor peptide made 
largely in the ArcN from which is also derived the opi-
oid β-endorphin and ACTH.514 α-MSH synthesis is stimu-
lated by estradiol515 within ArcN neurons. Projections of 
those neurons terminate in the mPOA and secrete α-MSH. 
Two MC receptors exist in the brain, MC3 and MC4, of 
which the latter is found in the mPOA. Bremelanotide 
(formerly PT-141) is a synthetic analogue of α-MSH and 
is the active metabolite of melanotan-II (MT-II). Systemic 
administration of bremelanotide stimulates solicitations 
selectively in female rats primed with EB or EB + proges-
terone.516 MT-II produces a weaker effect,517 although 
five consecutive days of MT-II administration produces 
an effect similar to bremelanotide in magnitude.518 The 
enhancement of solicitations by bremelanotide is dupli-
cated by infusions to the lateral ventricles or mPOA, but 
not the VMH.30 Systemic bremelanotide also stimulates 
DA release in the mPOA, but not NAc or dorsal striatum 
of OVX rats treated with EB and progesterone. Finally, 
the stimulation of solicitations by systemic bremelanotide 
can be reversed by infusions of a selective MC4 antago-
nist (HS019) to the mPOA, but not VMH.30 It can also be 
reversed by infusions of the D1 antagonist SCH-23390 to 
the mPOA,30 suggesting that incertohypothalamic DA 
terminals in the mPOA contain MC4 receptors that drive 
DA release which in turn stimulates solicitations by acting 
on D1 receptors in this brain region. Thus the integration 
between MC and DA systems in the mPOA is a critical 
component in the regulation of solicitations.



50. FEMALE SEXUAL BEHAVIOR2330

7. REPRODUCTIVE BEHAVIOR AND ITS CONTROL

Glutamate in the Ventrolateral VMH
Full and partial solicitations are also under the control 

of the VMH. In a series of studies, Georgescu et al.519,520 
investigated the inhibitory role of glutamate neurons in 
the ventrolateral VMH on the sexual behavior of female 
rats. Both full and partial solicitations were inhibited 
dramatically by infusions of glutamate, and also by infu-
sions of the selective ionotrophic receptor agonists AMPA 
(α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) 
and kainite to sexually experienced OVX rats primed with 
EB and progesterone.519 Conversely, infusions of the dual 
AMPA/kainite receptor antagonists CNQX (6-cyano-
7-nitroquinoxaline-2,3-dione) and DNQX (6,7-dinitro-
quinoxaline-2,3-dione) to the ventrolateral VMH of 
sexually experienced OVX rats primed with EB alone 
increased full and partial solicitations.520

Differential Effect of Opioid Receptors
Pfaus and Pfaff521 reported that infusion of the delta 

opioid agonist DPDPE, but not the kappa opioid ago-
nist U50-488h, or the mu opioid agonist DAMGO, to 
the lateral ventricles of sexually experienced OVX rats 
primed with EB alone or EB and a low dose of progester-
one (to induce moderate lordosis and low solicitations) 
increased solicitations in bilevel chambers significantly 
over control infusions. It is not known at present where 
in the brain this facilitation of solicitations may occur.

Taken together, these data suggest that the connections 
between the VMH and mPOA are critical in the regulation 
of solicitations relative to lordosis. This is evident from 
the fact that mPOA lesions suppress solicitations but aug-
ment lordosis, and is an example of the kind of mutually-
exclusive behavioral patterns discussed by Konorski.522 
Females cannot hold a lordosis posture while making 
a forward-directed solicitation and vice-versa. Mutu-
ally interactive inhibitory subsystems in the two regions 
likely regulate the timing of solicitations and lordosis.

Pacing Behavior

The ability of female rats to pace the copulatory con-
tact is critical for the timing of intromissions. This timing 
leads to distributed stimulation of the clitoris, vagina, 
and possibly also the cervix, stimulation that female rats 
find rewarding,81,160,513 and that facilitates pregnancy 
or the induction of pseudopregnancy,49,523 and partner 
preference.77,78 Female rats pace at a faster rate early in 
the copulatory interaction, but with successive ejacula-
tions, the number of level changes per mount in bilevel 
chambers (Figure 50.5) increases dramatically, thereby 
increasing male inter-intromission intervals.75 A similar 
effect is also observed in large open fields, and is more 
pronounced in wild rats compared to domesticated lab-
oratory rats.50 In unilevel pacing chambers, the latency 

to return to the male’s side after mounts, intromissions, 
and ejaculations shows a progressive increase in time, 
which increases with successive ejaculatory series.49,74 
Low, steady rates of pacing are induced in OVX rats 
by EB and progesterone, whereas OVX rats adminis-
tered EB alone show higher rates of pacing and rejec-
tion responses. Fully primed female rats tested in small 
chambers that offer no escape from the male also display 
rejection responses (e.g., rearing and boxing postures524) 
at a higher rate than females tested in chambers where 
they can escape. It would appear that females use rejec-
tion responses to pace the copulatory contact if they 
cannot do so otherwise. However, in those conditions, 
copulation does not induce reward and does not facili-
tate pregnancy or pseudopregnancy (see below).

Very little work has been done examining the neural 
control of pacing. However, Xiao, Kondo, and Sakuma525 
found that bilateral radiofrequency lesions of the lateral 
septum, but not the mPOA, disrupted the pattern of 
female exits from the male side of a 3-hole unilevel pac-
ing chamber. In general, females with lateral septal lesions 
did not leave the male side after mounts, and took sig-
nificantly more time than sham-lesioned females to leave 
the male side after intromissions or ejaculations. This sug-
gests that activation of the lateral septum by copulatory 
stimulation is an important component of the regulation 
of pacing. It is not known whether such lesions would 
facilitate or inhibit the development of place or partner 
preferences. Guarraci, Megroz and Clark526 found that 
cell body lesions of the mPOA, but not MEA or BNST, 
increased the intromission and ejaculation contact-return 
latencies of females in pacing chambers, and increased 
the number of withdrawals from the male’s side follow-
ing intromissions, suggesting that mPOA activation is 
critically involved in keeping females with males, con-
sistent with its role in solicitations. Interestingly, clitoral 
anesthesia induced by lidocaine injections also increased 
the number of exits and returns displayed by OVX, EB 
and progesterone-primed rats in a 4-hold unilevel pac-
ing chamber, decreased the amount of time spent with 
males, and increased the ejaculation return latency.163 
This indicates that CLS maintains low rates of pacing, 
which increase if the stimulation is blunted. As noted 
above, polysynaptic clitoral afferents project to the mPOA 
and CLS activates Fos in medial regions of the mPOA of 
female rats. It is not known if the reward induced by CLS 
is eliminated by mPOA lesions, although such lesions dis-
rupt the reward induced by VCS527 (see below).

Lordosis

More is known about lordosis than any other behav-
iorally relevant spinal reflex with supraspinal control, 
except perhaps the control of penile erection172 and the 
conditioned eye-blink response.528,529 The seminal work 
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of Pfaff32,62 merged electrophysiology with anatomy 
and pharmacology and behavioral neuroendocrinology 
with molecular biology to determine the modular supra-
spinal components of the lordosis reflex and its control 
by ovarian hormones acting on receptors in the brain 
(Figure 50.19). The action of steroids on those receptors 
alters the brain’s neurochemistry and activates the excit-
atory sexual systems reviewed above. This activation 
then alters the reaction of the female to incentive sexual 
stimuli, which leads her to being attracted to male cues. 
Similarly, it results in approaches and solicitation of sex 
from the male and, upon simple palpation of the flanks 
and perineum, the female no longer reacts with violent 
intense rejection but rather with ear wiggles and sexual 
receptivity. Thus, the behavioral reflex is linked by the 
mechanics of gene transcription and translation in criti-
cal hypothalamic circuits to the timing of ovulation so 
that the two can co-occur.

Coordinating physiological responses with behavior 
requires timing. Hormone priming essentially sets up a 
timing system for lordosis onset and offset. Although 
some of the neurochemical systems involved in onset 
are part of the excitatory system, others are actually 
inhibitory and keep lordosis from occurring too soon. 
Likewise, activation of the excitatory neurochemical 
systems keeps the potential for lordosis on long after 
the female has taken herself out of the mating game. In 
general, the hypothalamic targets of estradiol include 
neurosecretory neurons such as GnRH and DA neurons 
that affect both pituitary secretion and sexual behavior, 
and local circuitry neurons such as POMC, GABA, and 
glutamate.

Given the pivotal role that the VMH and the sur-
rounding area plays in the control of lordosis behavior, 
our discussion will focus on this region, with the under-
standing that estradiol also affects the neurochemistry 
within the broader network of brain regions with ERs. 
Based on the global effects of estradiol and progesterone 
on VMH activity, as described below, ovarian hormones 
clearly transform neural processing in this brain region.

Lordosis Onset

Activation of Excitatory Systems
Estradiol and progesterone activate gene expres-

sion for a number of neurochemicals systems in the 
hypothalamus, most notably in the mPOA and VMH, 
which stimulate female sexual behaviors including lor-
dosis (Figure 50.20). This includes an upregulation of 
specific neurotransmitter receptors by estradiol, e.g., 
progestin preceptors, OT receptors, adrenergic α1 recep-
tors, muscarinic receptors, MC three and four receptors, 
and delta opioid receptors, GnRH receptors, GABA-A 
receptors, and D1 DA receptors.62,484 This changes how 
the circuit between the two regions operates. Enzymes 

are also upregulated in this system, including NO syn-
thase, prostaglandin-D synthase, and DBH, leading to 
an upregulation of the end products. NO in particular 
is a critical and ubiquitous player in neurotransmitter 
release, so its upregulation is important in helping to set 
the stage for the upregulated neurochemical systems to 
play a functional role in the generation of the behavior. 
Pharmacological studies help to confirm the role played 
by these neurochemical substrates:

GABA AND GLUTAMATE

Throughout the central nervous system, many synapses 
include excitatory or inhibitory amino acids as neurotrans-
mitters, namely glutamate and GABA, which bind to 
ionotropic receptors, allowing brisk changes in the post-
synaptic potential. Both glutamate and GABA, and their 
ionotropic receptors, are present in the VMH.531–538 Several 
methodological approaches have demonstrated ovarian 
hormone regulation of these neurotransmitter systems and 
implicated their actions in the VMH in the control of lor-
dosis behavior (reviewed in Refs 536,539–541), providing 
insight into the neurological control of mating behavior.

Glutamate neurotransmission in the VMH has been 
studied with many technical approaches. Double-label 
immunohistochemical studies indicate that the ERα-
expressing neurons in the VMH are glutamatergic, 
based on the colocalization of the vesicular glutamate 
transporter-2.542 Ultrastructural analysis of the VMH 
has revealed abundant excitatory inputs, including 
 axospinous synapses, which comprise approximately 
one third of the total VMH synapses. Based on hormone 
replacement regimens, estradiol treatment increases glu-
tamate levels in the VMH, and this is reversed with sub-
sequent progesterone treatment.543 The number of AMPA 
and NMDA (N-methyl-D-aspartate) receptor subunits are 
likely to increase with estradiol treatment.538,544 Although 
the behavioral pharmacological evidence is not complete, 
glutamate action in the VMH acutely inhibits female 
sexual behavior during the time window of receptiv-
ity.541 This may be mediated by a combination of kainite, 
AMPA, and NMDA receptors.519,520 Thus, it appears that 
female reproductive behavior depends on the inhibition 
of glutamate neurons in the VMH.

Whereas glutamatergic neurons in the VMH are the 
direct target of ovarian hormone action, the specific func-
tions of GABAergic cells in the VMH are not yet clear. 
Nevertheless, GABAergic activity in the VMH is clearly 
modulated by estradiol. Estradiol treatment increases 
GABA levels in the VMH, based on hormone replace-
ment regimens, and subsequent progesterone treat-
ment returns GABA back to vehicle-treated levels.545,546 
Similarly, estradiol treatment may also increase GABA 
turnover.546 The estradiol-induced increase in GABA 
production may be based on transcriptional regulation 
of GAD65, an enzyme involved in GABA biosynthesis, 
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FIGURE 50.19 Modular control of lordosis. Left: Estradiol binds at the level of the hypothalamic and midbrain modules, altering the way that incoming somatosensory inputs from 
flank and perineal stimulation via the spinal cord to brainstem are processed and responded to. This alters the response of the female to palpation of the flanks, switching her from fighting 
to lordosis (bottom right). Right top: estradiol binding in the mediobasal hypothalamus, and midbrain of female rats. Right middle: critical elements of the lordosis circuit depicting regions 
of estradiol binding in the medial preoptic area (mPOA), ventromedial hypothalamus (VMH), and anterior hypothalamus. Motor pathways for the circuit include the lateral vestibular 
nucleus (for postural orientation) and lateral vestibulospinal and reticulospinal neurons that control contractions of the lateral longissimus and transversospinalis muscles of the back, 
which raises the base of the tail and head. Estradiol activates both nuclear and membrane-bound receptors in the hypothalamus to induce these changes, which include the augmentation 
of neurochemical systems that are excitatory for sexual behavior (see text). Abbreviations: aha, anterior hypothalamic area; ArcN, arcuate nucleus; BNST, bed nucleus of the stria termina-
lis; cbllm, cerebellum; cc, corpus callosum; cg, midbrain periaqueductal gray; db, diagonal band of Broca; dm, dorsomedial hypothalamus; fr, fasciculus retroflexus; h, hippocampus; ic, 
inferior colliculus; lh, lateral habenula; lsep, lateral septum; MAH, medial anterior hypothalamus; mamm, mammillary bodies; MMGB, medial region of the medial geniculate body; mpo, 
medial preoptic area; ml, medial lemniscus; NAc, nucleus accumbens; ol, nucleus of the lateral olfactory tract; olb, olfactory bulb; PVN, paraventricular nucleus; tub, olfactory tubercle; vm, 
ventromedial hypothalamus; vpm, ventral premammillary nucleus. Source: Modified from Pfaff.32



nEuRAl oRgAnIzATIon 2333

7. REPRODUCTIVE BEHAVIOR AND ITS CONTROL

by ERα and ERβ.547 Behavioral pharmacology experi-
ments suggest that GABA activity may facilitate female 
sexual behavior,543 thus exerting disinhibition.539 GABA 
may work, in part, by inhibiting local serotonin release, 
which tonically inhibits lordosis behavior in the VMH,543 
and also by inhibiting glutamate neurons (see below).

These neurotransmitter systems also work in concert to 
exert opposite effects in the mPOA and VMH on lordosis. 
In the VMH, infusions of the GABA-A receptor agonist 
muscimol to OVX, EB-primed rats facilitates lordosis,548,549 
whereas infusions to the POA inhibit lordosis.549 Infusions 
of muscimol also reduce extracellular 5-HT concentra-
tions in the VMH.548 Conversely, infusions of the GABA-A 
receptor antagonist bicuculline to the mediobasal hypo-
thalamus resulted in an inhibition of lordosis. VMH infu-
sions of antisense oligodeoxynucleotides that flank the 
start codon for two isoforms of the GABA synthesizing 
enzyme glutamic acid decarboxylase (GAD; GAD65 and 
GAD67) inhibited lordosis in rats primed with continu-
ous diffusion of crystalline estradiol in sc silastic capsule 
implants.550 These data suggest that GABA in the mPOA 

inhibits lordosis by an action at GABA-A receptors, but 
facilitates lordosis in the VMH.

Glutamate was first reported by Kow et al.540 to inhibit 
lordosis in OVX, EB-primed rats following infusions to 
the VMH. This effect was replicated and extended by 
Georgescu and Pfaus519,520 who showed that infusions 
of glutamate or its ionotrophic receptor agonists AMPA, 
NMDA, and kainate, to OVX rats primed with EB and 
progesterone inhibited lordosis. NMDA and kainate infu-
sions also increase the display of rejection responses. In 
contrast, infusions of the NMDA antagonist AP-5 or the 
AMPA/kainate antagonists, CNQX or DNQX, each facili-
tate lordosis in OVX rats primed with EB alone.520 Inter-
estingly, an electrophysiological depolarization signature 
due to glutamate release in VMH slices was shown by 
Booth, Weyman, and Jackson551 to be inhibited by the same 
treatments. Moreover, pharmacological agents known to 
inhibit lordosis systemically, such as the 5-HT1A agonist 
8-OH DPAT, the mu opioid agonist DAMGO, bicuculline, 
and CRF all potentiate the in vitro VMH glutamate EPSP 
(excitatory postsynaptic potential) signature.

(A)

(B)

(C)

FIGURE 50.20 (A) Electron micrograph of a cell body in the VMH from an OVX rat treated with oil. (B) Electron micrograph of a cell body 
in the VMH from an OVX rat treated with estradiol (E) for 3 days. Note the accumulation of rough stacked endoplasmic reticulum (e r shown by 
arrow) indicative of protein synthesis in B compared to the smooth and unstacked, e r in A. (Source: Adapted from Meisel and Pfaff.448) (C) Activation 
of excitatory neurotransmission in the lordosis circuit by E and progesterone (P) acting on ERs and PRs to modify gene expression. Source: Adapted 
from Kow and Pfaff.530



50. FEMALE SEXUAL BEHAVIOR2334

7. REPRODUCTIVE BEHAVIOR AND ITS CONTROL

The local VMH GABA and glutamate circuits are 
modulated, in part, by major afferents arriving from the 
hindbrain somatosensory-arousal systems providing sero-
tonergic, noradrenergic, histaminergic and cholinergic 
projections to the area lateral to the VMH proper,426,552–559 
innervating the long primary dendrites that extend into 
the lateral fiber plexus. The brainstem nuclei of origin 
for these neurotransmitters all express estrogen recep-
tors.269,397,560,561 In summary, the key neurotransmitters of 
fast synaptic neurotransmission, glutamate and GABA, 
are regulated by estradiol within the VMH and have 
opposing effects on female sexual behavior.

DOPAMINE

Systemic administration of DA agonists can facilitate 
or inhibit lordosis behavior in OVX rats primed with EB 
and progesterone or EB alone. Paradoxically, systemic 
administration of a range of doses of DA antagonists also 
facilitates lordosis, although the behavioral signature of 
the effect is different. As mentioned above, whereas DA 
agonists produce a small increase in lordosis, but a large 
increase in solicitation behaviors, DA antagonists pro-
duce a large increase in lordosis quotients but abolish 
solicitations. Both the inhibitory and facilitatory effects 
of systemic DA agonists appear to act through D2 recep-
tors in OVX, EB primed rats, but on D1 receptors in OVX 
rats primed with EB and progesterone. DA release in 
the VMH facilitates lordosis. Infusions of apomorphine 
or DA to either the mPOA or VMH facilitate lordosis 
behavior in OVX rats primed with low doses of estrone, 
whereas infusions of the DA receptor antagonists halo-
peridol or α-flupenthixol to these regions inhibit lordo-
sis, but only in OVX rats made highly receptive with 
high doses of estrone. DA release is also increased in the 
VMH during copulation.426 As discussed above, cross-
talk between D1 receptors and steroid hormone recep-
tors in the VMH appears to play a role in the facilitation 
of lordosis by a cellular process of ligand-independent 
activation of steroid hormone receptors. Mani et al.413 
reported that the D1 agonist SKF-38393 facilitates lor-
dosis in OVX, EB-primed rats following infusions to the 
lateral ventricles, and that this effect is blocked by the 
progesterone receptor antagonist RU-38486 or by infu-
sions of and antisense oligodeoxynucleotide directed 
against the start codon of the PR-A. These data indicate 
that activating D1 receptors in the VMH is capable of 
activating PR, possibly by altering the phosphorylation 
of the PR or a specific transcription coregulator. Thus, in 
addition to progesterone altering the activity of dience-
phalic DA systems, DA in the VMH appears to facilitate 
lordosis by the indirect activation of PR.

NOREPINEPHRINE

There is considerable evidence that the hormonal 
changes that underlie lordosis behavior and certain 

neuroendocrine reflexes, such as the preovulatory LH 
surge and pseudopregnancy, are associated with altered 
norepinephrine transmission. Early studies suggested 
that hindbrain noradrenergic projections to the hypo-
thalamus provide critical visceral and somatosensory 
cues for female sexual behavior.555 Extensive work by 
the Etgen laboratory has demonstrated that estradiol 
and progesterone enhance norepinephrine release in the 
vicinity of the VMH.562 From a postsynaptic perspec-
tive, ovarian hormones reconfigure the populations of 
subtypes of noradrenergic receptors in the VMH, sub-
stantially altering signal transduction pathways and 
neurophysiological responses.563 These changes in 
responsiveness and signal transduction channels appear 
critical for allowing the relevant sensory information to 
the VMH to promote the lordosis reflex.

Although systemic treatment with α or β noradrener-
gic receptor agonists and antagonists modulate lordosis, 
no clear picture emerges. Central effects of adrenergic 
drugs on female sexual behavior have not been studied 
in detail. Infusions of the α1 antagonist prazocin into 
the VMH, but not the mPOA, inhibit lordosis, whereas 
infusions of the α2 antagonist idazoxan or the β antago-
nist metoprolol to the VMH have only small inhibitory 
effects in some animals. Infusions of metoprolol to the 
mPOA inhibit lordosis in most rats. These results indi-
cate that stimulation of α1 receptors in the VMH facili-
tates lordosis, whereas stimulation of β receptors in the 
mPOA may inhibit lordosis. Consistent with this, in vivo 
microdialysis studies have shown that copulation with 
intromission increases extracellular norepinephrine con-
centrations in the VMH.426

ACH AND HISTAMINE

Both Ach and histamine have similarly been impli-
cated as arousal neurotransmitters acting in the VMH 
to promote female sexual behavior, based on behavioral 
pharmacology studies.564,565 As with serotonin and nor-
epinephrine, specific subtypes of receptors for both of 
these signals are regulated by ovarian hormones.566,567 
Electrophysiological studies indicate that during estra-
diol exposure these signals have an enhanced excitatory 
effect on VMH neurons.530,567 Histamine, in part, acts 
through H3 receptors to inhibit spontaneous GABA 
release.532 The overall pattern that arousal transmitters 
that facilitate lordosis are also excitatory to VMH neu-
rons would seem paradoxical, given that glutamate, 
a major excitatory transmitter, appears inhibitory for 
female sexual behavior within the VMH. In this regard, 
it is important to remember that the VMH includes sev-
eral cell types that may be differentially regulated and 
exert excitatory vs inhibitory effects on behavior.444 In 
addition, the effect of glutamate on neurotransmission 
may not be as straightforward as “excitatory”. The net 
effect of glutamate on the membrane potential may be 
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dependent on the general state of excitability.551 Never-
theless, there is a strikingly consistent pattern for hind-
brain arousal pathways to converge on the VMH, with 
effects being modulated by estradiol.

OXYTOCIN

One of the most studied neuropeptides in female sexual 
behavior is OT, which acts in both the mPOA and VMH to 
promote female sexual behavior.568,569 OT immunoreactiv-
ity is present in the lateral fiber complex, in axons arising 
from the PVN, colocalized with glutamate.451 These OT 
axons innervate the long primary dendrites that extend 
into the lateral fiber complex.451 Receptors for OT in the 
VMH undergo striking regulation by estradiol and pro-
gesterone in the VMH.570 In general, ovarian hormones 
increase OT signaling by increasing levels of the receptor 
in the vicinity of the OT fibers. Electrophysiological stud-
ies suggest that OT has excitatory effects on VMH neu-
rons.571,572 Thus, OT may be co-released with glutamate in 
the area surrounding the VMH to signal social and sexual 
cues, and ovarian hormones sensitize specific VMH neu-
rons to this information.

Within the VMH, estradiol stimulates OT receptor 
transcription. Lordosis is facilitated dramatically follow-
ing systemic and intracerebroventricular administra-
tion of OT, and OT receptors in the mPOA and VMH 
appear to facilitate the frequency and duration of lor-
dosis, respectively.573 OT infusions to the VMH of OVX, 
estrogen-primed prarie voles reduces rates of aggres-
sion and increases the amount of physical contact that 
the females made with males, although it also leads to 
a faster termination of estrus. Copulation with intromis-
sion induces Fos within OT neurons of the paraventricu-
lar hypothalamus, but not the SON,574 suggesting that 
endogenous OT systems are activated during copulation 
and may participate in the facilitation of lordosis follow-
ing intromission. Interestingly, masturbation to orgasm 
increases plasma OT levels in women.575

GnRH, PROLACTIN, AND CHOLECYSTOKININ

Like OT, GnRH and prolactin have various effects 
that promote reproduction in females, including the pro-
motion of female sexual behavior.576–579 GnRH-labeled 
neurons reside in more anterior regions of the rat hypo-
thalamus, but axonal fibers surround the VMH580 and 
GnRH receptors are expressed in the VMH.581 Likewise, 
prolactin receptors are expressed in the ventrolateral 
VMH,582 and prolactin-immunoreactive axons are found 
in the mediobasal hypothalamus.583

GnRH produces a dramatic facilitation of lordosis in 
OVX, estradiol-primed rats following systemic or ven-
tricular administration. Infusions of GnRH into the ante-
rior POA, arcuate, and PAG, also facilitate lordosis in 
estradiol-primed rats, whereas infusions of a GnRH anti-
body into the MCG reduce lordosis quotients. Copulation 

with intromission, or manual VCS induces Fos within 
GnRH neurons of the anterior POA,584 indicating that 
these neurons are activated during copulation. Interest-
ingly, estradiol enhances the proportion of GnRH cells 
that express Fos following VCS, possibly through long-
term noradrenergic activation. These results suggest that 
the activation of OT and GnRH neurons may form part 
of the system that facilitates lordosis following VCS. 
The behavioral effects of prolactin have not received as 
much experimental attention as GnRH, although there is 
a perception that sexual satiety is induced by prolactin 
in both men and women because prolactin release from 
the anterior pituitary into the general circulation occurs 
with orgasm.585 Recently, it was found that women’s 
self-reported satisfaction from orgasm is correlated posi-
tively and significantly with the concentration of postor-
gasmic prolactin found in serum.586 Additional studies 
are needed to understand the neural circuitry, neuro-
chemical coding, and neurophysiological targets of both 
GnRH and prolactin.

Another peptide that robustly innervates the VMH 
and mPOA is cholecystokinin (CCK). Immunoreactive 
terminals for CCK innervate VMH soma and dendrites, 
arising from the lateral parabrachial nucleus,587–589 a 
region with strong ERα expression, and making sym-
metric synapses suggestive of inhibition.590 Likewise, 
CCK receptors are found in the VMH.591,592 However, the 
significance of CCK action in the VMH for lordosis and 
the type of information being relayed remains unclear.

DELTA OPIOIDS AND SUBSTANCE P

Two peptides intrinsic to VMH neurons are enkephalin 
and substance P. Enkephalin immunoreactivity is pres-
ent in inhibitory axons terminating on GABA- containing 
VMH neurons. Thus, enkephalin may  modulate these  
intrinsic GABAergic VMH neurons, thereby  disinhibiting 
VMH output.534 Enkephalin itself is upregulated by 
estradiol and progesterone in the VMH,496 like its appar-
ent co-transmitter GABA. Electrophysiological studies 
suggest that enkephalin has excitatory effects on VMH 
neurons. As with GABA, the delta opioid receptor ago-
nist DPDPE inhibits or facilitates lordosis following 
infusions to the mPOA or VMH. Infusions of DPDPE to 
the lateral or third ventricles facilitates lordosis in OVX 
rats primed with EB alone or EB and progesterone.521,593 
A similar action was found when low doses of DPDPE 
were infused directly to the VMH.593 However, higher 
doses inhibit lordosis. These effects were blocked by the 
delta opioid receptor antagonist naltrindole, and infu-
sions of naltrindole alone to the VMH inhibited lordo-
sis. Infusions of antisense oligodeoxynucleotides that 
flank the start codon for pre-proenkephalin mRNA to 
the VMH reduced lordosis quotients in OVX rats primed 
with estradiol.594 As mentioned above, estradiol stimu-
lates the synthesis of pre-proenkephalin in the VMH 
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which could act as an endogenous ligand for delta recep-
tors there.595 However, infusions of DPDPE to the lateral 
mPOA inhibit lordosis.499

Substance P is intrinsic to VMH neurons, and many 
substance P-labeled neurons express ER.596,597 These sub-
stance P neurons are thought to project to the periaque-
ductal gray to promote sexual behavior.598,599 Substance 
P-labeled terminals are likely to be excitatory, based 
on ultrastructure.600 Thus, although both enkephalin 
and substance P are present in the VMH and promote 
lordosis, evidence suggests that they comprise distinct 
elements within the lordosis circuitry, with enkephalin 
modulating local inhibitory connections and substance P 
modulating the descending excitatory outflow.

In sum, the local VMH circuit includes glutamatergic 
and GABAergic neurons, which are directly and indi-
rectly responsive to estradiol, and which have acute 
effects on lordosis behavior. The neuropeptides sub-
stance P and enkephalin are co-localized with these 
amino acids, and are likely to modulate their actions. The 
VMH also receives ascending influences from the hind-
brain carrying arousal and sensory information, which 
is also modulated by ovarian hormones. Although the 
neurochemistry of many hypothalamic connections is 
not known, peptides associated with reproduction, such 
as OT, GnRH and prolactin may also affect lordosis by 
acting on VMH neurons. Taken together, the VMH is 
transformed by exposure to estradiol to change its inter-
nal pattern of activity, and at the same time, the salience 
of various inputs to the VMH is drastically recalibrated. 
As we better define the neurochemistry that controls the 
lordosis circuit, it will be important to understand how 
these neurotransmitters and neuromodulators work in 
concert to affect neurophysiology and behavior.

Inhibition of Inhibitory Systems

Tonic inhibitory systems exist for lordosis in the mPOA 
and VMH that must be overridden to activate lordosis. 
This action then constrains lordosis to the periovulatory 
period. Local actions of both mu and delta opioids, and 
glutamate, appear to keep lordosis constrained until 
such time as those systems are either inhibited directly, 
or the action of excitatory neurochemical systems over-
comes the inhibitory tone.35

Serotonin is the most intensely studied transmitter 
in this category, and as might be expected, projections 
from the raphé to the VMH inhibit female sexual behav-
ior.601,602 Treatment of OVX rats with behaviorally effec-
tive doses of estradiol plus progesterone significantly 
reduces the turnover of serotonin in the VMH in a man-
ner that correlates with changes in lordosis behavior.603 
Decreased serotonin in parallel with increased sexual 
behavior is also seen across the estrous cycle.489 This 
inhibitory effect of serotonin on female sexual behavior 

is associated with an inhibitory effect on VMH neuronal 
activity, although the affected cell types have not been 
described. The serotonin receptor subtype 2C has been 
localized to the VMH and its neuropil.533 Acute systemic 
treatment with the selective serotonin reuptake inhibi-
tor fluoxetine disrupts estrous cyclicity, and reduces 
lordosis and the amount of time OVX rats primed with 
EB and progesterone spend with males, with Sprague-
Dawley rats being less sensitive to these effects than 
Fischer rats.604–606 The reduction in lordosis by fluoxetine 
was attenuated by progesterone,607 and by chronic daily 
exposure to males.606

Timing Mechanisms
There are at least two timing mechanisms that have 

been explored, one that keeps the onset of sexual behav-
ior in females tightly linked to ovulation, and another 
that allows females to receive a requisite amount of 
genitosensory stimulation before they fall out of heat. 
Sinchak et al.608 have carefully provided evidence for 
a hypothalamic timing microcircuit in which estradiol 
acting at ERα in the ArcN stimulates neuropeptide Y 
release locally within the arcuate that in turn stimu-
lates the activation of POMC neurons that project to the 
mPOA. These neurons release β-endorphin which acti-
vates mu opioid receptors in the mPOA, internalizing 
them and effectively inhibiting lordosis for the duration 
of its action. The maintenance of the mu opioid receptor 
internalization is provided by the activation of GABA-B 
receptors in the arcuate. This mechanism would also be 
expected to inhibit appetitive solicitations derived from 
activation of DA in the mPOA. However, this transient 
inhibition is itself inhibited by subsequent progesterone 
actions at PRs, and/or by higher doses of free estradiol 
acting at membrane receptors in the ArcN (linked to  
Gq-coupled activation of Srx) and/or in the mPOA 
(linked to GPER-30 receptors) to deactivate mu opioid 
receptors in the same membrane.609,610 Together, these 
mechanisms create a biochemical timer that keeps sex-
ual behavior from occurring until requisite physiologi-
cal changes have taken place to support pregnancy. It 
may also be an important mechanism to investigate for 
estradiol-induced negative feedback, which may aug-
ment opioid actions in the mPOA while reducing the 
GPER-30 linked disinhibition.

Lordosis must also be maintained long enough for 
females to receive sufficient CLS for reward and poten-
tially cervical stimulation to induce the neuroendocrine 
reflexes (e.g., upsuck for sperm transport, increased 
prolactin surges) that facilitate pregnancy and the pro-
gestational state. Glutamate neurons and glutamate 
transmission in the VMH are activated by VCS and 
inhibit lordosis as part of a local hypothalamic circuit 
that terminates estrus (see below). Estradiol augments 
GABA turnover in the VMH, and glutamate neurons 
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have GABA-A receptors, making them a target of inhi-
bition by GABA. Such a mechanism likely extends the 
period of sexual receptivity before glutamate release 
in the VMH reaches a critical threshold for estrus 
termination.

It is tantalizing to consider that estradiol tips a bal-
ance between energy regulation and sexual behavior by 
modulating hypothalamic systems that promote feed-
ing, utilizing them to inhibit both appetitive solicitations 
and lordosis until ovulation, at which time mechanisms 
that normally inhibit feeding (e.g., MCs) are activated 
that stimulate sexual behavior (e.g., Refs 611,612). For 
example, infusions of antisense oligodeoxynucleotides 
to GAD, which stimulate lordosis, inhibit food intake 
in rats.613 This contrasts dramatically with the ability of 
food and sex to activate the central nucleus of the amyg-
dala and stimulate mesolimbic DA release similarly in 
the NAc.614,615 This suggests a fundamental difference in 
the way that hypothalamic regulatory systems and more 
general mesolimbic incentive motivational systems reg-
ulate different motivational states. Hypothalamic sys-
tems appear to regulate different motivations as if each 
possesses its own separate and mutually exclusive drive 
state. In contrast, the mesolimbic incentive system treats 
external stimuli associated with those drive states as 
essentially similar in the induction of forward-directed 
locomotion. However, it is also the case that glutamate 
in the VMH inhibits both feeding616 and sex,519,520,540 and 
may be involved in satiety-related mechanisms that ter-
minate both motivational systems.

Estrus Termination

The offset of appetitive sexual responses and lordo-
sis occurs as the period of sexual receptivity terminates. 
This is typically referred to as “estrus termination”. Part 
of this process accompanies the natural decline in hor-
monal titers, whereas more immediate inhibition stems 
from an abbreviation of the sexually appetitive and 
receptive period brought about by VCS from intromis-
sions and ejaculations.617 Abbreviated estrus induced 
by mating stimulation or VCS has been shown to occur 
in rats,75,617,618 guinea pigs,619 and hamsters.620 Indeed, 
allowing females to pace sexual contacts increases the 
inhibitory effect of intromissive stimulation on estrus 
duration in estrus-cycling rats74,523 presumably because 
males make deeper and more powerful thrusts that 
could stimulate the cervix. In fact, OVX rats primed with 
EB and progesterone and given 50 distributed VCSs with 
a glass rod (that approximates the number of intromis-
sions they would receive in an hour from a male) display 
no solicitations, low levels of lordosis, and high num-
bers of rejection responses when tested 12 h later.75 In 
that study, rats given sham stimulation 12 h before test-
ing displayed normal rates of solicitations and lordosis, 

and no rejection responses. Females allowed to copulate 
freely with males in bilevel chambers show changes in 
the intensity of appetitive and consummatory behaviors, 
such that by the fourth ejaculatory series, fully primed 
female rats show few solicitations, lower lordosis fre-
quencies and reflex magnitudes, longer pacing intervals, 
and higher numbers of rejection responses, compared to 
the first ejaculatory series.70 It is around this time that 
naturally-cycling female rats in large semi-natural envi-
ronments will take themselves out of the open area and 
back into the burrow system, effectively ending their 
participation in sexual activity. However, in experimen-
tal settings where sexual stimulation is not controlled 
adequately by the female, she displays longer periods of 
sexual receptivity than would be predicted from studies 
in the wild or in semi-natural environments. This is simi-
lar to the observation by Wallen et al.621 of female rhesus 
macaques displaying nearly constant receptivity when 
paired in small enclosures with a single male, relative to 
females in large natal groups that take themselves out of 
a sexual interaction by retreating to the female territory.

Role of PRs
Inhibition of protein synthesis by infusion of a pro-

tein synthesis inhibitor into the mPOA in hamsters622 
or following systemic administration to guinea pigs619 
blocks mating-induced abbreviation of the period of sex-
ual receptivity. Likewise, inhibition of protein synthesis 
delays heat termination.623 Recent work suggests that 
heat termination that is hastened by mating stimulation 
is referable to more rapid down-regulation of PRs (spe-
cifically PR-B)354 than the down-regulation in response 
to progesterone. Thus, although there is still much that is 
not known about the role of PR-A and PR-B in particular 
neurons, it is clear that PRs play a key role in the tim-
ing of sexual receptivity in a variety of circumstances by 
serving as a gatekeeper for the transcriptional processes 
within those neurons involved in sexual behavior.

Although, there is a temporal correlation between 
decreased blood levels of progesterone and termi-
nation of behavioral estrus,362 the two events are not 
causally related. That is to say, the period of sexual 
receptivity ends even when levels of progesterone are 
maintained.624,625 Because of the importance of PRs to 
the facilitation and maintenance of sexual behavior, the 
cellular basis for heat termination requires looking at 
the regulation of PRs. Progesterone down-regulates its 
own receptors. Loss of behavioral response can typi-
cally be attributed to either a declining concentration 
of activated/occupied hypothalamic PRs356 or the 
absence of a sufficient level of progesterone to interact 
with the particular level of unoccupied receptors. The 
decline in concentration of unoccupied PRs can come 
about in a variety of ways; a decrease in estradiol levels 
results in the loss of induction of PRs, and exposure to 
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progesterone down-regulates PRs. Both processes typi-
cally occur in tandem.

It has been suggested356,626 that the refractory period, 
which follows termination of sexual receptivity236,627,628 
comes about as a result of the same mechanism that 
causes heat termination—down-regulation of PRs by 
progesterone. During the refractory period, the concen-
tration of hypothalamic PRs is depressed in relevant 
brain areas,357,358,629,630 and progesterone treatment 
results in low levels of activated PRs.362,631 In addition, 
a supplemental estradiol injection, which offsets the 
decrease in the concentration of unoccupied PRs, result-
ing in high levels of occupied PRs in response to pro-
gesterone,364 causes the animals to regain response to 
a second progesterone injection.236,628,632 The refractory 
period can also be overcome by injection of a large dose 
of progesterone,631,633 which, unlike a lower dose, results 
in a large increase in progesterone-occupied PRs in the 
hypothalamus.631 Therefore, with a variety of condi-
tions, there is a strong concordance between the level of 
activated PRs and the expression of lordosis.

There have been conflicting reports of progesterone 
involvement in estrus termination in rats. However, 
although rats may not become completely insensitive 
to progesterone after estrus termination, they do in fact 
become hyposensitive to it634 The hypothesis that estrus 
termination and the refractory period are both due to 
loss of activated PRs may explain the conflicting opin-
ions concerning progesterone’s role in estrus termina-
tion.224,635,636 Perhaps behavioral response is critically 
dependent on an adequate concentration of PRs, rather 
than progesterone per se.

Role of Disinhibited VMH Glutamate
As mentioned above, VCS that induces estrus termi-

nation activates a population of glutamate neurons in 
the ventrolateral VMH637 (Figure 50.21). When OVX rats 
are given 0, 1, 5, 10, 20, 30, 40, or 50 distributed VCSs, 
the activation of Fos in those neurons is delayed by prior 
treatment with EB or EB and progesterone, relative to 
the oil-treated control, such that fewer neurons reach a 
threshold for activation until animals receive between 
10 and 20 VCSs.169 This blunted activation indicates that 
steroid hormones have suppressed the ability of VCS to 
activate these inhibitory glutamate neurons, although by 
50 VCSs there is no difference in the number activated 
between steroid-treated and control groups. How might 
estradiol with or without progesterone do this?

Virtually all the glutamate neurons that co-express Fos 
after VCS also contain GABA-A receptors which are up-
regulated by EB treatment.638 The stimulation of GABA 
synthesis by EB in GABA neurons that project to the 
VMH would be expected to bind to GABA-A receptors 
on the inhibitory glutamate neurons and induce IPSPs 
for an extended period of time, long enough perhaps for 

the female to receive enough intromissions and ejacula-
tions to ensure pregnancy, or at least the progestational 
state consonant with pseudopregnancy. Extracellular 
concentrations of glutamate in the VMH during copu-
lation in OVX females are very high in females injected 
only with oil (which reject male advances), and lowest in 
females primed with EB and progesterone who display 
full appetitive and consummatory sexual responses.638 
Indeed, infusions of the AMPA/kainate receptor antag-
onist DNQX to the VMH prior to the application of 50 
distributed VCSs delayed the induction of estrus termina-
tion observed in saline-treated controls 12 h later.639 The 
source of the GABA input to glutamate neurons has not 
been identified, although preliminary findings suggest 
it comes largely from the mPOA.640 Thus blocking gluta-
mate receptors in the ventrolateral VMH blocks the abbre-
viation of estrus induced by VCS, an effect that may occur 
naturally by estradiol-induced inhibition of glutamate 
neurons. The net effect would be for females to remain 
sexually receptive long enough to receive a requisite num-
ber of intromissions and ejaculations to ensure pregnancy.

Disorders of Sexual Desire or Interest in Women

An important example of how basic research translates 
into clinical treatments comes from the study of the neu-
rochemistry of sexual desire. At least three potential treat-
ments for disorders of sexual desire or interest in women 
are being considered, including the MC agonist bremela-
notide, the serotonergic mixed 5-HT1A agonist/5-HT2A 
antagonist flibanserin, and a combined pill containing 
testosterone and a phosphodiesterase-5 (PDE-5) inhibi-
tor called Lybrido®. Acute bremelanotide increases solici-
tations selectively in preclinical models using OVX rats 
primed with low doses of EB, or low EB and progester-
one.30,516 Likewise chronic flibanserin increases solicita-
tions and reduces rejection responses in OVX rats primed 
with EB or EB and progesterone.316 Microdialysis samples 
from the mPFC, NAc, and mPOA showed that acute 
flibanserin increased basal levels of NE in all areas, along 
with DA in the mPFC and mPOA, but not the NAc. Acute 
flibanserin also decreased serotonin levels in all areas. 
However, chronic flibanserin increased DA and NE sig-
nificantly in the mPFC, but did not alter serotonin, glu-
tamate, or GABA relative to chronically injected controls. 
Finally, acute treatment of OVX rats primed with low EB 
with testosterone and a PDE-5 inhibitor increased solicita-
tions and hops and darts.641 All three drugs have shown 
significant efficacy in increasing self-reported sexual 
desire in pre- and post-menopausal women diagnosed 
with hypoactive desire disorder.30,642–646 The ability of 
these three drugs to stimulate solicitations in a rat model 
of hypoactive sexual desire predicts their functional appli-
cation in women with hypoactive sexual desire. This sug-
gests strongly that the neurochemical systems underlying 
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appetitive sexual behavior are conserved between at least 
rats and humans, and that translational work on the neu-
ral and hormonal systems that mediate sexual responses 
in women can be derived from basic and clinical research 
in other species.

CONSEQUENCES OF SEXUAL 
STIMULATION

In addition to estrus termination and the activation of 
neuroendocrine reflexes associated with pregnancy and 
pseudopregnancy, stimulation of the clitoris and pos-
sibly also vagina and cervix induce a state of pleasure 
or reward. As with many rewarding stimuli, a neuro-
biological “preference” can be established for physical 
elements associated with the original pleasure-inducing 
event. For things such as pleasure-inducing drugs this 
can include the place in which the drug effect is expe-
rienced. In animal models this can be manipulated so 
that an individual’s preference for one distinctive envi-
ronment in which the drug effect was experienced, vs a 
different environment in which the effect of vehicle or 

placebo was experienced, can be quantified and used as 
an indicator of how rewarding the drug is.647 This same 
principle can be applied to sexual stimulation received 
in one distinctive environment vs no stimulation in 
another environment. In both cases the location in which 
the rewarding event occurred becomes a conditioned 
stimulus in the classic sense and thus this phenomenon 
(or behavioral assay) is referred to as conditioned place 
preference (CPP). Specifically in the context of sexual 
reward experienced with a distinctive partner, the same 
principle can be applied such that salient partner-related 
cues become conditioned stimuli that induce a partner 
preference. Research into the role of conditioning as a 
result of sexual stimulation brings together three impor-
tant observations in females (and males) of a variety of 
species.

First is the phenomenon of mate choice, observed nat-
urally in female prairie voles that display monogamous 
social and sexual partner preferences with the first male 
they mate with (see Chapter 48). This phenomenon traces 
its cause in large part to the particular way that OT is acti-
vated in regions of the limbic system and hypothalamus 
that create an incentive sexual preference for a particular 

FIGURE 50.21 Activation of glutamate neurons in the VMH by 50 artificial vaginocervical stimulations over the course of 1 h. Top left: 
schematic drawing of the VMH and its substructures. Top right: glutamate staining in the VMH. Bottom left: Fos induction within glutamate neu-
rons in the ventrolateral VMH. Gray cytoplasmic staining is for glutamate (Glu) whereas black nuclear staining is for Fos. Bottom right: close up 
of double labeling of Fos within Glu neurons, Fos alone (non-Glu neurons), and Glu neurons without Fos. Source: Reprinted from Georgescu et al.,637 
with permission of Elsevier.
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male with whom the female has mated with.648,649 The 
male of this species also displays monogamous social and 
sexual preferences,650,651 and the two will form a part-
nership around care and raising the young. It has been 
assumed that most other species are polygamous, and in 
particular, sexually promiscuous. If there are preferences 
at all (especially in males) it is for a different partner every 
time in order to spread the genes far and wide in the pool. 
Both male and female rodents are assumed to be polyga-
mous and promiscuous, with both showing “Coolidge 
effects” in which sexual activity is more vigorous with 
new compared to familiar partners.72,652

The second phenomenon is sexually CPP, as referred to 
above. In these studies rats or hamsters are placed into the 
start chamber of a CPP box (Figure 50.22) that contains two 
distinctive environments to either side that vary by floor 
pattern or some other distinctive characteristic but one that 
will not, in and of itself, invoke a preference. The sequential 
pairing of sexual stimulation or a reward state induced by 

sexual interaction with a partner is then experienced in one 
side, and no stimulation is experienced in the other side, 
and occurs for several trials after which the rat is placed 
into the start chamber and allowed to roam freely between 
the two distinctive environments. If the sexual stimulation 
has positive reinforcing (i.e., rewarding) properties then 
the rat will spend significantly more time on the side of the 
chamber where it previously experienced the rewarding 
sexual stimulation (UCS (unconditioned stimulus)).

Seminal work by Paredes and colleagues starting 
in the mid-1990s asked if female rats “liked” sex. Prior 
to this work, lordosis and other sexual behaviors were 
seen as being “driven” by estradiol and progesterone, 
but given the existence of penile spines it was far from 
clear that female rats found sexual interaction with 
males rewarding. And given the anesthetic properties of 
progesterone, it was indeed possible that they did not, 
but that the potential pain of sex was merely reduced 
to endurance levels by hormone action. In fact, in some 

Conditioned place preference (CPP) apparatus

Steel grid or bedding
Wire mesh

Guillotine doors
Black wall

Center choice chamber

White wall

FIGURE 50.22 Typical conditioned place preference (CPP) apparatus used to determine the rewarding properties of drugs or sexual 
stimulation. Source: Adapted from Paredes and Vazquez.81
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studies prior to Paredes’ work, female rats were observed 
to run away from the male after ejaculation, or to choose 
to spend more time with a castrated male relative to an 
intact male.653 Two important papers by Paredes’ group 
changed that perception (see below).81,513

The third phenomenon merged the first two, showing 
that polygamous and promiscuous female rats are capa-
ble of developing sexually conditioned partner and mate 
preferences based on the degree of reward experienced 
during their first sexual encounters, and whether this 
sexual reward had been paired with a discrete odor cue 
(e.g., almond) on the male they had their first rewarding 
sexual experience with.28,78 This effect was also demon-
strated for the strain of the male with which the female 
had her first sexual experience.77 Female rats also dis-
play mate guarding behavior, just as female prairie voles 
do, if they are sexually receptive and placed into a situa-
tion with their male and another competitor female who 
is sexually receptive. Together, these phenomena link 
reward and reproduction, and bring them to a more cog-
nitive level of analysis that translates extremely well to 
human sexual behavior. One significant advantage to the 

use of neutral stimuli such as an odor of a place being 
paired with a sexual reward state is that the stimuli can 
be presented alone—as a priming cue—and the activa-
tion of brain areas in response to the conditioning cue 
in the absence of the actual rewarding stimulus can be 
identified. This has led to important insights into the 
neurological underpinnings of reward, both in response 
to pleasure inducing drugs and sexual stimulation.63

Sexual experience in females also changes cellular 
morphology in critical regions of the reward circuitry. In 
female golden hamsters, for example, copulatory experi-
ence increases dendritic spine density in the NAc, but 
decreases it in the PFC94 (Figure 50.23). An augmenta-
tion of synapses in the NAc, concomitant with a decrease 
in the PFC, would be expected to enhance the ability of 
distal sexual incentives to focus a female’s attention and 
activate excitatory appetitive sexual responses. Thus, 
the ability of sexual experience to augment the activa-
tion of sexual reward, and in turn sexual desire, is most 
likely rooted in molecular, structural, and neurochemical 
changes that sensitize females to competent sexual incen-
tives and cues that predict sexual reward or pleasure.

FIGURE 50.23 Spine densities of Golgi-
stained neurons from the prefrontal cortex (PFC), 
NAc, or caudate nucleus (dorsal striatum) in sexu-
ally experienced or naïve female hamsters. Sexual 
experience induces a significant reduction in spine 
density in the PFC, but a significant increase in the 
NAc. This pattern of synaptic alteration would be 
expected to enhance reactivity to both uncondi-
tioned and conditioned sexual incentives. Source: 
Reprinted from Meisel and Mullins,94 with permission 
of Elsevier.
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Sexual CPPs in Females

Oldenburger et al.654 found that when copulation 
occurred within one of the distinctive compartments of 
a CPP apparatus, female rats showed a weak preference 
for the chamber in which mating occurred. Subsequently, 
Paredes and Alonso513 and Paredes and Vazquez81 dem-
onstrated a robust place preference in female rats when 
they were able to pace the rate of copulation without 
having to employ defensive behaviors. This was accom-
plished using unilevel pacing chambers bisected by a 
Plexiglas divider with one or more small holes that only 
the female can pass through.74,81,513,523 The male was 
sequestered on one side of the chamber and the female 
was then free to pace the copulatory contact by running 
from side to side. Like males, females acquired a strong 
preference for a distinctive environment only if they 
were placed into the CPP box after paced copulation. 
No preference was found if the copulation was unpaced 
prior to placement in the CPP box (meaning that it had 
occurred in the same pacing chamber but without the 
divider). Thus, for a female rat, place preference devel-
ops only if she has been able to control the initiation and 
rate of copulation freely without having to use defensive 
behaviors.

There is an alternative interpretation of the place pref-
erence induced by controlled paced mating in females. 
Rather than paced mating being rewarding per se, it may 
be that under conditions in which the female has little 
control over the interaction, such as is usually the case 
in tests of animal mating behavior performed in small 
constrained arenas such as glass aquaria, that these 
interactions are actually aversive. To examine this pos-
sibility, Afonso, Woehrling, and Pfaus504 allowed female 
rats to copulate in two unilevel pacing conditions using 
Plexiglas dividers that had either four holes or one hole. 
This was done to eliminate the possibility of an “aver-
sive” state resulting from unpaced copulation. Trials 
were conducted sequentially at 4-day intervals and 
each pacing condition was paired with one of the dis-
tinctive sides of a CPP apparatus, in a counterbalanced 
fashion. Control groups contrasted the 4-hole or 1-hole 
condition with a no-divider condition (as was done by 
Paredes and Alonso513). Control females developed sig-
nificant CPP for either the 1-hole or 4-hole condition, 
relative to unpaced copulation with no divider. These 
data replicate the findings of Paredes and Alonso513 and 
indicate that both the 4-hole and 1-hole condition were 
rewarding relative to the unpaced (no divider) condi-
tion. However, they do not rule out the possibility that 
the real distinction being made was between an aver-
sive condition (unpaced copulation) and a rewarding 
condition (paced copulation). This was addressed in the 
group allowed to contrast the 4-hole vs 1-hole condition, 
in other words females that could control the pace of the 

sexual interaction freely (in the 4-hole chamber, females 
can move freely from side-to-side) vs those that could 
not (in the 1-hole chamber, males often obstruct the hole 
with their heads, forcing the females to wait longer to 
get to the male’s side). Females developed significant 
CPP for the 4-hole relative to the 1-hole paced copula-
tion experience. Thus free control over the rate of copu-
lation appears to be a crucial variable in the rewarding 
aspects of pacing. Similarly, Jenkins and Becker655 found 
that female rats developed significant CPP for paced rel-
ative to unpaced mating, but also for unpaced mating in 
which the experimenter removed the male for a period 
that approximated the female’s imposed interintromis-
sion interval, relative to unpaced mating in which male 
removal did not occur. Thus, female rats develop CPP for 
sex at their own preferred intervals. Taken together with 
the results of Matthews et al.,656 these data suggest that 
reward comes from the sexual stimulation that females 
receive, namely mounts with intromission, so long as 
that stimulation occurs at the desired time intervals.

What is it about paced copulation that leads to CPP in 
females? Meerts and Clark657 reported that VCS applied 
with a 1 ml syringe plunger at 200 g of pressure for 2 s 
at 30-s intervals, for a total of 15 stimulations, induces 
a reliable CPP in OVX females primed with estradiol 
and progesterone. Given that VCS could stimulate the 
internal clitoris as well as the cervix, we asked whether 
external CLS could induce CPP.160,658 As mentioned 
above, in these studies CLS was administered either 
with a lubricated paintbrush or a small cotton-tipped 
vibrator at preferred intervals for 10–15 min over five to 
six reinforced sessions. Both types of stimulation induce 
robust CPP. Importantly, reward as a consequence of 
CLS can be induced in OVX females with or without 
hormone priming,162 indicating that sexual reward is 
independent of steroid priming, although such priming 
would normally be required for females to experience 
CLS from mounts with pelvic thrusting, as it would be 
necessary to induce lordosis which exposes the clitoris 
to the male’s perineum during pelvic thrusts.164 Indeed, 
females primed sequentially with EB and progesterone, 
or its ring A-reduced metabolites, show enhanced CPP 
from paced copulation relative to females primed with 
EB alone, presumably due to the greater degree and fre-
quency of lordosis induced in females receiving proges-
terone in addition to estradiol.659 OVX rats primed with 
low doses of EB that induce low to moderate lordosis do 
not develop CPP,660 OVX, hormone-primed rats given 
exitotoxic lesions of the nucleus paragigantocellularis 
of the brainstem have attenuated lordosis and appeti-
tive behaviors.661 Interestingly these females also do not 
develop CPP to artificially-applied VCS.

Maintenance of the memory of paced sexual reward 
does not require exposure to hormones. Parada et al.162 
attempted to extinguish paced copulation-induced CPP 
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by exposing OVX rats in three priming conditions (oil, 
EB alone, and EB + progesterone) to the CPP box with-
out prior copulation. Only females primed fully with 
EB + progesterone shifted their preference back to the 
original preconditioning side. At first glance, this would 
appear to be counterintuitive, given that the reward state 
induced by distributed CLS (and possibly also paced 
copulation) is not hormone dependent. However, desire 
is hormone-dependent, and only the females that had 
hormone-induced activation of appetitive sexual moti-
vation, but did not receive sexual stimulation, showed 
extinction of the CPP. Nonprimed, or EB-primed, females 
did not extinguish the CPP. This makes sense from a 
conditioning viewpoint: animals that are not in a state of 
desire do not need that state satisfied, whereas animals 
in a state of desire seek satisfaction of that desire. Extinc-
tion thus occurs only when a state of desire or need exists 
and there is no satisfaction.

Finally, the CPP induced by paced copulation in 
females can be blocked by systemic injections of nalox-
one,662 or following infusions of naloxone to the mPOA, 
VMH, or MEA, but not the NAc.663 Similar data have 
been reported for males, suggesting that common opioid 
systems in the brains of male and female rats are acti-
vated by sex-related cues662 and constitute a primary 
reward signal. Bilateral lesions of the nucleus paragigan-
tocellularis in the brainstem decrease the amount of time 
females spend with males, which in turn, attenuates the 
CPP induced by paced copulation.621 Such lesions also 
attenuate the CPP induced by artificial VCS, suggesting 
both a behavioral and sensory deficit induced by the loss 
of the nucleus paragigantocellularis.

Conditioned Sexual Partner Preferences

As outlined above, female rats also show olfactory 
conditioned partner preference for males associated 
with a pacing-induced reward state.78 This was accom-
plished in unilevel pacing chambers in which the paced 
condition involved the placement of either a 1-hole 
or 4-hole Plexiglas divider through which the female 
could regulate the initiation and rate of copulation. The 
nonpaced condition involved copulation in the same 
chamber but without the divider. Females in the paired 
group were given paced copulation with males that had 
almond odor applied to their necks and anogenital area 
vs nonpaced copulation with males that had distilled 
water applied to the same areas. After four paced vs 
nonpaced trials, females were placed into a large open 
field with two tethered males, one scented and the other 
unscented, and choice of male to solicit, copulate with, 
and receive ejaculations from, was recorded. Females 
for which the odor was paired with the paced condition 
selectively solicited, copulated with, and received ejacu-
lations from the scented male. Females that had the odor 

explicitly unpaired or paired randomly with pacing did 
not display a preference (Figure 50.24).

As with males, females showed a similar preference for 
strain cues associated with paced copulation,77 although 
it was stronger if the strain associated with paced copula-
tion was their own. Interestingly, in that study, pigmented 
or albino females solicited whichever strain of male was 
associated with paced copulation, but received ejacula-
tions preferentially from males of their own strain and 
only if that male had been associated with paced copula-
tion. This also revealed a degree of assortative choice, espe-
cially for mating, and showed that females, like males, can 
differentiate copulation from mating. Finally, female rats 
that experienced manual distributed CLS in the presence 
of a cotton gauze pad soaked in almond extract chose 
to copulate selectively with almond-scented males over 
unscented males during their first sexual experience in 
a large open field with both males.161 Interestingly, they 
did not show a preference to receive the scented male’s 
ejaculations, suggesting that the VCS received from males 
during paced copulation induced a further reproductive 
or mate choice. It is not yet known whether this stems 
from specific stimulation of the cervix (and pelvic nerve) 
or from full stimulation of internal and external aspects of 
the clitoris,166 or other sensory regions inside the vagina. 
Experience with paced, relative to nonpaced, copulation 
in unilevel chambers induces significant neurogenesis 
in the granular layer of the accessory olfactory bulbs,664 
a region known to contain intrinsic memory systems 
related to pheromonal stimulation and recognition of 
conspecifics.665,666

Female rats also learn inhibitory associations. Coria-
Avila et al.83 found that administration of the opioid 
receptor antagonist naloxone blocks the development of 
sexually conditioned partner preference in OVX female 
rats primed with estradiol and progesterone. Subsequent 
analysis of the naloxone training sessions revealed that 
by the 6th or 7th trial, most females display significantly 
fewer, if any, solicitations, a low frequency and magni-
tude of lordosis, and a far higher number of rejection 
responses, as if they were in a state of estrus termina-
tion (Figure 50.25). In some females this occurred before 
any intromissions were achieved by the males, although 
such stimulation was often reacted to violently by the 
females who would box and push the males onto their 
sides or backs. And this was despite full hormonal priming 
with estradiol and progesterone.

In addition to the inhibitory effect of sex without opi-
oid reward induced by naloxone, thwarted sexual activ-
ity in the presence of an inaccessible male can also induce 
an inhibitory state. Parada et al.161 gave sexually naïve 
female rats five trials of CLS in the presence of a sexually 
active male scented with almond behind a screen. On 
alternating days, the females received sham CLS in the 
presence of an unscented male behind the screen. During 
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the final open field test with two males, one scented and 
the other unscented, females solicited selectively the 
unscented male and showed a trend to receive that male’s 
ejaculations preferentially. At first glance, these data 
seem at odds with the fact that CLS induces a reward 
state. However, it was noted that females attempted to 

solicit the males behind the screen following CLS during 
the training trials, which, of course, were not successful 
because the male was behind a screen. Thus, it is likely 
that the female was in a state of thwarted sexual nonre-
ward that she associated with the odor and generalized 
to the choice of male for her first sexual experience.

Scented
male

Unscented
male

Odor
♀ ♂

Training Testing

FIGURE 50.24 Conditioned partner preference in the female rat. Top: Paired females are given their first sexual experiences in a unilevel 
pacing chamber with a male behind a 1- or 4-hole divider scented with a neutral odor (e.g., almond). This is followed 4 days later by exposure to 
an unscented male but with the divider removed. After several sequential exposures of scent and paced copulation and no scent and unpaced 
copulation, females are tested in a large open field with two tethered males, one scented and one unscented. The choice of male for solicitations, 
hops and darts, mounts, intromissions, and ejaculations is recorded. Unpaired females are given the opposite order of association during training, 
no scent with paced copulation and scent with unpaced copulation. Random paired females are given scented and unscented males randomly 
associated with paced and unpaced copulation. Bottom: Choice of male for first solicitation, frequency of solicitations, hops and darts, and choice 
of male for first ejaculation, from paired, unpaired, or random-paired groups. Source: Adapted from Coria-Avila et al.78
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After conditioning, the odor cue can be presented 
alone to examine its priming effect in the brain. Relative 
to the unpaired group, the odor presented to females in 
the paired group activates Fos (Figure 50.26) in a circuit 
that is strikingly similar to that observed in fMRI brain 
scans of women during the presentation of erotic pic-
tures, and especially pictures of their partners.64 These 
regions include: olfactory tubercle, piriform cortex, ACC, 
insula, NAc, dorsal striatum, lateral septum, mPOA, 
PVN of the hypothalamus, ArcN, VMH (scattered), and 
VTA.76 Presentation of strain cues behind a wire-mesh 
screen also activated Fos. Relative to unpaired rats, Fos 
protein was activated in significantly more cells in the 
piriform cortex, mPOA, VMH, and VTA.76 Areas of com-
mon activation by odor and strain related cues associ-
ated with paced copulation are shown in Figure 50.27.

Finally, OVX, hormone-primed female rats given their 
first 10 multiejaculatory sexual experiences with the same 
unscented male display agonistic behavior toward an 

OVX, hormone-primed competitor female (CF) when 
the three are placed into an open field. Sexually receptive 
female rats have generally been observed to compete with 
one another in large mating arenas50; however this behav-
ior is reminiscent of the mate guarding displayed by Prai-
rie voles.667 The partner female (GF) typically mounts the 
competitor female (HO) and pushes her into corners of the 
open field, sometimes with aggressive postures, prior to 
running back to the partner male with her ears wiggling. 
Occasionally she positions herself between the male and 
the competitor, making it nearly impossible for the male 
to gain access to the other female.668 These observations 
have been replicated and extended,669 and brain activa-
tion by the encounter compared between the GF and the 
HO. In both cases, Fos activation of CLS and VCS zones in 
the hypothalamus and limbic system have been detected; 
however in GFs that position themselves more frequently 
between the male and the HO, Fos protein was induced 
in a greater number of cells by the copulatory stimulation. 
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FIGURE 50.25 Effects of acquiring sexual experience under the influence of saline or naloxone (5 mg/kg, ip) on appetitive and consummatory 
sexual behaviors in OVX female rats primed fully with estradiol and progesterone. Females received six multiejaculatory experiences at 4-day 
intervals prior to the final test in which all rats received an injection of saline. Source: Adapted from Pfaus et al.28
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However, only the GF shows significant activation of Fos 
within OT and vasopressin neurons of the paraventricular 
and supraoptic nuclei, and within regions of the hippo-
campus and corticomedial amygdala that could indicate 
an additional stress response.

It would appear that female rats possess the ability to 
show behavioral and neuronal rudiments of either selec-
tive or promiscuous mating depending on their early 
sexual experience. Such experience seems to crystallize 
sexual response patterns and preferred sexual stimuli by 
sensitizing a circuit similar to that activated in monoga-
mous prairie voles during their formative sexual experi-
ences96,651,670 and following parturition.671 The results of 
Aragona et al.96 are particularly instructive, as the sexual 
bond formation was inhibited by activation of D1 recep-
tors, but facilitated by the activation of D2 receptors. 
This suggests a neural reorganization in mesolimbic ter-
minals after formative sexual experiences that “seals the 
bond”, making it less likely for other stimuli to acquire 
associative strength.

Such an effect is consistent with modern theories of 
learning (e.g., Refs 672,673) and has been implicated in 
the susceptibility to drug addiction, especially in terms 
of responding to cues that predict drug reward,674 and 
more generally in response to food-related cues.614,675 
The interaction of OT and DA in the PVN, mPOA, VTA, 
and NAc of male rats induces penile erections and links 
them to appropriate appetitive sexual behaviors.676 
Thus, opioid reward states may form the rudimentary 
mechanism of bonding because they sensitize DA release 
in the presence of reward-related cues compelling ani-
mals to focus their attention and goal-directed behavior 
toward those cues. Activation of brain OT systems (by 
DA or other means) adds a reduced social distance and 
bonding to this neurochemical reward state. Given that 
pharmacological activation of opioid receptors induces 
a direct suppression of both hypothalamic and pitu-
itary OT secretion,677 sensitized and potentially reorga-
nized mesolimbic and hypothalamic DA systems must 
be a necessary intermediary. This is consistent with a 

NAc Piriform cortex VTA

P

UP

mPOA

FIGURE 50.26 Selective activation of Fos by an almond odor paired (P) or unpaired (UP) with paced copulation. Note the activation of the 
central DA cell body-rich region of the VTA by the odor cue. Abbreviations: Tu, olfactory tubercle; PirCtx, piriform cortex; ACC, anterior cingulate 
cortex; NAc, nucleus accumbens; mPOA, medial preoptic area; LS, lateral septum; PVN, paraventricular nucleus; VTA, ventral tegmental area; 
CPu, caudate-putamen; ArcN, arcuate nucleus, VMH, ventromedial hypothalamus. * p<0.05; # p = 0–.06; ~ p = 0.08. Source: Reprinted from Coria-
Avila and Pfaus,76 with permission of Elsevier.
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multifaceted role of mesolimbic DA in incentive salience 
and response initiation.38

Conditioned Sexual Arousal in Women

It is difficult to condition sexual arousal or desire 
in adult humans as they have likely already had their 
sexual preferences set by experience long before. This 

is especially true in women when using erotic films or 
pictures as the UCS that are rated as mildly or moder-
ately stimulating (e.g., Ref. 678). More recent attempts 
have been more successful using UCSs or CSs of higher 
incentive quality. For example, Both et al.679,680 found 
that neutral pictures of male headshots paired with 2 s of 
intensely pleasurable vibrotactile CLS produced greater 
vaginal pulse amplitude (VPA) during extinction in the 
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FIGURE 50.27 Comparison of Fos in the piriform cortex, mPOA, or VTA, by almond odor or strain cues (pigmented vs albino) paired with 
paced copulation. Source: Reprinted from Coria-Avila and Pfaus,76 with permission of Elsevier.
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paired vs unpaired groups. In another study, stimuli 
were presented briefly (30 ms).681 Although only the 
paired group showed increased VPA to the CS during 
the first extinction trial, there was no increase in the con-
scious affective value of the stimulus. Finally, Hoffmann, 
Janssen, and Turner682 varied the duration and relevance 
of a CS (abdominal area vs a gun) that was paired with 
short erotic film clips in both men and women. Inter-
estingly, when the stimuli were presented subliminally 
for brief durations, the relevant abdominal stimulus 
increased arousal in both men and women. However, 
when the stimuli were presented for longer periods prior 
to the erotic film clips, a sex difference emerged in which 
the relevant CS alone (abdominal area) induced genital 
arousal in men, but the presumably irrelevant stimu-
lus alone (gun) induced genital arousal in women. This 
latter effect may indicate that women require CSs that 
increase autonomic arousal to a higher extent than men, 
a potential corollary of the “discordance” experienced 

by women, but not men, between genital and subjective 
sexual arousal.151 It may also be the case that anything 
that activates the sympathetic nervous system suf-
ficiently in women may generate a genital blood flow 
response, regardless of whether the stimulus is sexual in 
nature. This may occur at anytime during the menstrual 
cycle, but may be interpreted as more “sexual” when 
women are periovulatory.

An Integrative Model of Conditioned Sexual 
Responding

The model proposed by Pfaus, Ismail, and Coria-
Avila683 and shown in Figure 50.28 accounts for both 
unconditioned and conditioned sexual responding, 
integrating a number of important regions that regulate 
female sexual responses by the hypothalamus, limbic 
system, and cortex. With reference to conditioning, CSs 
associated with sexual reward state UCSs act as “priming 
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FIGURE 50.28 Neural systems critical for the display of sexual behavior in the rat. This figure is reproduced in color in the color plate sec-
tion. Appetitive behaviors made toward unconditioned or conditioned sexual incentive stimuli lead to sexual reward that is processed by three 
interactive systems. Two systems process olfactory stimuli and sexual reward relatively independently, whereas a third, mesolimbic DA system, 
acts to integrate both the conditioned olfactory cue and its rewarding sexual outcome. Three common regions, the piriform cortex, mPOA, 
and VTA, are activated in male and female rats by conditioned olfactory stimuli. Opioid actions in the VTA potentiate mesolimbic DA activa-
tion, whereas opioid actions in the mPOA inhibit sexual arousal and desire. Neurotransmitter systems or their receptors in red are excitatory 
for sexual motivation whereas those in blue are inhibitory. Black pathways signify major inputs and outputs of the system. Note that opioids 
can be excitatory in the VTA, inhibitory in the mPOA, or either in the VMH (depending on the receptor type). A similar system is activated in 
humans.63 Abbreviations: ACC, anterior cingulate cortex; ArcN, arcuate nucleus of the hypothalamus; CB1, cannabinoid Type 1 receptor; CPu, 
caudate-putamen (striatum); DA, dopamine; δ, delta opioid receptors; GnRH, gonadotropin releasing hormone; LS, lateral septum; MeApd, 
posterior-dorsal nucleus of the medial amygdala; mPOA, medial preoptic area; MSH, melanocyte stimulating hormone; μ, mu opioid receptors; 
NAc, nucleus accumbens; NE, norepinephrine OT, oxytocin; PirCtx, piriform cortex; PVN, paraventricular nucleus of the hypothalamus; Tu, 
olfactory tubercle; VMH, ventromedial nucleus of the hypothalamus; VP, ventral pallidum; VTA, ventral tegmental area; 5-HT, serotonin. Source: 
Adapted from Pfaus et al.683
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stimuli” to activate cortical, limbic, and hypothalamic 
circuits involved in the facilitation of sexual arousal and 
desire and/or in the suppression of inhibitory systems 
(Figure 50.28). Some of those circuits involve selective 
processing of the sexual stimulation that generates the 
reward state (UCS), the olfactory stimulus (CS), and 
a system that integrates the CS and UCS so that ani-
mals can focus their attention and engage appropriate 
forward-directed locomotion toward the CS when it 
is present.38,46 What becomes apparent is that systems 
for sexual reward and incentive responding overlap 
with systems proposed for sexual (and maternal) bond-
ing (e.g., Ref. 670). These involve the interaction of at 
least three neurochemical systems, including meso-
limbic DA, hypothalamic OT, and opioids that inhibit 
hypothalamic structures like the mPOA, but sensitize 
mesolimbic DA systems through a process of disinhibi-
tion.684 This is strikingly similar to Fisher’s685 proposal 
of three primary emotional systems for mating, repro-
duction, and parenting, to the mechanism proposed 
for romantic love in humans,686 and to the models of 
human sexual responding proposed by Georgiadis and 
colleagues.45,64

During conditioning, female rats display solicitations 
indicative of their desire to copulate. If they receive the 
appropriate stimulation (i.e., distributed CLS during 
paced copulation) UCS-detector centers become acti-
vated (green circle). The posterior-dorsal nucleus of the 
medial amygdala is sensitive to paced copulation and 
projects information about it to the mPOA which serves 
as a main integrator area. The VTA is activated to pro-
vide DA to areas important for motivation and decision 
making (e.g., NAc, ACC) and motor activity (caudate-
putamen, ventral pallidum). POMC cells in the ArcN 
project to the VTA and release opioids that hyperpolarize 
inhibitory GABAergic neurons (not shown), and there-
fore increase DA cell firing in mesolimbic and mesocorti-
cal terminal regions. The ArcN also projects α-MSH and 
opioid terminals to the mPOA to facilitate solicitations 
and reward, respectively. OT terminals from the PVN 
may release OT into the mPOA to facilitate reward and 
bonding. Concurrently the Tu (blue circle) and PirCtx 
sense the CS. PirCtx projects olfactory information to 
the mPOA and to the NAc to strengthen the incentive 
value of the CS. Exposure to the conditioned odor alone 
will activate the common core areas (pink boxes) which 
trigger motivation and integrate information (yellow 
circle) about males that bear the CS. Serotonin (5-HT) 
and endocannabinoid (CB) release and binding in the 
cortex, limbic structures, and hypothalamus, is associ-
ated with an inhibition of the excitatory mechanisms. 
In animals with a well-developed visual system, like 
humans, visual CSs likely provide the dominant prim-
ing cues, although auditory and olfactory cues should 
not be overlooked.

CONCLUSION

The study of sexual behavior in animals and humans 
has come a very long way since the mechanisms of sexual 
arousal and copulatory responding, and their hormonal 
and rudimentary neural bases, began to be studied in 
the 1960s. In particular, the advent of PDE-5 inhibitors 
for the treatment of erectile dysfunction in men opened 
up new vistas in the pharmacology of sexual behavior 
that thrust previous “basic science” studies of the role of 
different neurotransmitters in sexual behavior into the 
light of translational clinical science relating to human 
sexual function and dysfunction. Animal models of a 
variety of human sexual responses were determined 
that had predictive validity.31 It became clear from brain 
imaging studies in a variety of species using immediate-
early gene expression as a measure of activation, and 
from fMRI or PET studies as measures of activation in 
humans that a conserved set of neural pathways and 
neurochemical systems exist in vertebrates to excite and 
inhibit sexual behavior. Some of those systems are gen-
eral, and modulate responses to all unconditioned and 
conditioned excitatory stimuli (e.g., the mesolimbic DA 
system and its role in incentive motivation) or inhibi-
tory stimuli (e.g., the mPFC and other cortical systems 
that mediate behavioral inhibition as part of executive 
function). Other systems are more specific and mediate 
the autonomic control of genital arousal and the sexual 
approach and solicitation behaviors that females display 
as ovulation approaches. Those pathways share func-
tions for parental behavior, feeding, and drug addiction 
although some, like feeding and sex, may be mutually 
inhibitory. To what extent do drugs of abuse utilize and 
usurp the sex and bonding pathways? Understanding 
the interrelation of these systems, how they are activated 
by hormones and/or experience, and how experience 
can override hormonal priming, is a very promising 
avenue of cross-translational research. Understanding 
the similarities of bonding to addiction may well prove 
useful in the treatment of drug abuse or other obsessive-
compulsive addictions.

New data always raise new questions but also reframe 
some very old ones in the literature that have never been 
resolved. Several of these are outlined below.

What Can Studies of Female Sexual Behavior 
in Other Species Tell Us About Hormonal 
Influences on Sexuality in Women?

Much has been learned concerning the neuroen-
docrine processes and cellular mechanisms by which 
steroid hormones influence reproductive behaviors in 
rodents and other animals. Although cellular studies 
in humans are presently impossible to perform, mech-
anistic studies in rodents may provide clues about the 
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neuroendocrine mechanisms by which hormones act 
and interact in the brain to influence behavior in all spe-
cies, including humans. A number of basic principles 
have been derived from work in nonhuman species. For 
example, these studies demonstrate the importance of 
considering the timing of hormone treatments, the dos-
age of hormone, specific hormone used within a particu-
lar class of hormones, form of hormone (e.g., long-acting 
esterified estradiol or nonesterified estradiol), interac-
tions between hormones, the role of steroid receptor 
coactivators, route of administration, peripheral factors 
that may influence hormonal response, and the possible 
mechanisms of action by which hormones and other fac-
tors may influence hormone action and subsequently, 
sexual behaviors.687

These major advances in our knowledge belie a con-
tinuing gap in our understanding. In particular, sci-
entists are usually forced to measure either behavior, 
neurochemistry, electrophysiology or neuronal struc-
ture, often in a limited time window or with a specific 
neuroanatomical focus. A major frontier is to under-
stand the causal sequence of these dynamic, network-
wide events. Another major frontier is to understand the 
relative contribution of each of these hormone-induced 
changes to behavior, given that so many systems are 
being regulated simultaneously.

At a more granular level of analysis, recent work 
has identified different cell types in the VMH; how-
ever, the wiring diagram for these neurons is unclear. 
A better understanding of the neurochemistry and 
connectivity of these neurons would explain in a con-
crete manner the apparent excitatory and inhibitory 
controls of lordosis behavior. At present, the func-
tional significance of the diverse effects of estradiol 
on the dendritic arbors of these cell types is unclear. 
Detailed knowledge of VMH microcircuitry would 
help explain how and to what end estradiol exerts 
these cell-type-specific effects. Furthermore, our pres-
ent understanding of estradiol-induced changes in 
VMH dendrite structure is largely divorced from our 
knowledge of changes in neurochemistry and electro-
physiology. A fascinating future direction will be to 
determine the interplay between changes in synaptic 
connections and neurotransmission.

What is the Nature of Female Orgasm?

A critical question that continues to generate contro-
versy concerns the existence of a “G-Spot” that when 
stimulated properly leads to a “deep vaginal orgasm”.688 
Still others argue that such an anatomical entity does not 
exist689 citing clinical or case studies of women who have 
never found theirs despite trying. It may well be the case 
that not all vaginas are constructed the same way, and 
that internal sensory inputs come in various sizes and 

shapes. The “G-Spot” may correspond to an internal 
portion of the clitoris that has differential sensitivity in 
different women. It is also the case that experience with 
external CLS as a sole source of sexual stimulation and 
orgasm may well preclude the exploration of other stim-
ulation points, especially those that might be hard to get 
to and are never stimulated adequately by a sex partner. 
fMRI studies of external and internal clitoral/G-Spot 
stimulation and subjective awareness could help to solve 
this issue. Indeed, Komisaruk and colleagues have used 
fMRI to examine brain activation in women self-stim-
ulating to orgasm690 and it would appear that orgasms 
can be induced from external clitoral, internal clitoral, 
and/or cervical stimulation,691 despite differences in the 
areas of activation. How these differ in subjective qual-
ity could be examined using validated measures such as 
Orgasm Rating Scale.692

A similar problem exists in the animal literature. 
Although it is clear that VCS and not CLS potentiates 
estrus termination, it is not known whether paced CLS, 
VCS, or both, lead to the reward state necessary for the 
induction of CPP and/or partner preference. Moreover, 
it has not been established that the penis of the male rat 
actually makes contact with the cervix during intromis-
sion, although the ejaculatory plug of the male forms 
around the cervix and pubic bone, which would provide 
intense and continuous VCS when it occurs and until the 
plug is removed from the vagina. However, the rate and 
duration of intromissions is higher in paced vs nonpaced 
conditions.523 This, and not the presence or absence of 
ejaculations, is key in the induction of estrus termina-
tion and in the neuroendocrine responses (e.g., nightly 
prolactin surges) that facilitate pregnancy. Erskine74 has 
argued that paced copulation results in stronger intro-
mission thrusts, which may well stimulate both the cli-
toris and cervix.

How Does Awareness of Sexual Incentives 
Change across the Menstrual Cycle?

More attention needs to be paid to the menstrual 
cycle and how it affects women’s reactions to sexual 
incentive cues. These could build upon and extend 
current knowledge about autonomic, emotional, and 
cognitive changes across the cycle as they relate to the 
perception of, and reaction to, external sexual stimuli. 
Those perceptions could then be examined in terms of 
brain activation following the presentation of stimuli 
through goggles worn by the subjects. In this vein, cog-
nitive tasks that examine changes in relative attention 
toward explicitly sexual visual cues presented either 
above or below conscious awareness could be used 
in conjunction with physiological measures of sexual 
arousal to examine how the two are altered across the 
cycle (see below).
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Will There be Drug Treatments for Sexual 
Arousal, Desire, and Orgasm Disorders?

Disorders of sexual arousal, desire, and orgasm 
affect a sizable proportion of pre- and post-menopausal 
women world-wide depending on the criteria used to 
define the disorder.693 This can occur as a function of 
hormone or neurochemical imbalance, genetic “prone-
ness” to inhibition, depression and other mental illness, 
and the use of oral contraceptives that generate negative 
steroid feedback.

As noted above, the development of treatments for 
sexual disorders in women has benefited greatly from 
preclinical analyses provided by animal studies. Such 
studies can examine mechanisms at different levels of 
analysis (e.g., neuropharmacological to molecular) in 
ways that simply cannot be done in humans. This requires 
a complete analysis of the behavior of the animal “mod-
els”, and some degree of predictive validity that what 
is being observed in the particular animal model cor-
responds to the sexual process that requires treatment. 
In turn, this requires a conceptual understanding of the 
functional endpoint. For example, approach and solicita-
tion in female rats or macaques serves the same purpose 
as approach, flirtations, and maintenance of eye-gaze in 
women who have found someone sexually alluring, This 
is a critical behavioral juncture: in those with desire dis-
orders such behavior simply does not occur. In extreme 
cases it is not even thought of. What remains in many 
women is arousal without a proper context and no sex-
ual incentive to blame it on. Others lose the arousal com-
ponent as well. And of course, without this there is little 
chance of sexual gratification, leading to sexual interac-
tions that are likely aversive. This may especially be the 
case if the woman is prone to inhibition (e.g., Ref. 694).

In some women this is remedied easily by psychody-
namic therapies, whereas in others it is not. Such women 
may well have a physiological blunting of response that 
is due to hormonal or neurochemical systems that either 
are no longer operating properly to excite arousal and 
desire (as may occur in many women during and after 
menopause), or overactive inhibitory systems that have 
come online for a variety of reasons, some of which may 
be genetic and due to an increased sensitivity to sadness 
and depression (e.g., overexpression of the long allele 
form of the promoter regions of the serotonin trans-
porter gene695).

The discovery of potential pharmacological treatments 
for arousal and desire disorders in women have been 
largely serendipitous, with the prosexual effects of the 
MC-4 receptor agonist bremelanotide discovered during 
clinical trials of the potential tanning drug MT-II696 and 
the sexual effects of flibanserin discovered during its tri-
als as a potential antidepressant.642 The potential of tes-
tosterone as a therapy for the treatment of sexual arousal 

and desire disorders after menopause was first shown in 
studies where it was added as an adjunct to estradiol.138 
Current treatments with testosterone include a transder-
mal testosterone patch (Intrinsa) and labial gel (Libigel), 
both of which produce rather continuous penetration 
of testosterone into the circulation. Although these 
have positive efficacy in the treatment of arousal and 
desire disorders,697 they do not mimic the normal tes-
tosterone rise during ovulation.698 The efficacy of apply-
ing testosterone as a sublingual bolus was advanced 
by Tuiten et al.699 and recently shown in clinical trials 
that applied it in conjunction with a PDE-5 inhibitor or 
5-HT1A agonist to treat hypoactive desire induced by 
either a “bottom-up” lack of genital sensitivity700 or an 
abundance of “top down” inhibition over sexual incen-
tive cues.694 The first effect has been modeled in female 
rats.71 The dose of testosterone is extremely small, mak-
ing it likely that its action is only in the brain. The PDE-5 
inhibitor acts in the periphery to relax smooth muscle 
in the genitals, allowing for more rapid and complete 
engorgement. Approximately 4 h after administration, 
the brain is “ready” for sex, having undergone genomic 
changes induced presumably by testosterone that allow 
both genital arousal and sexual incentive stimuli to be 
registered and integrated. Essentially this “tricks” the 
brain into thinking that ovulation has just occurred. The 
combination is reported to be well tolerated and devoid 
of untoward side-effects in a number of treatment regi-
mens. A major advantage is that the combination can be 
taken “on demand” prior to sexual activity.

It is impossible to know at this point whether any of 
these drugs will be approved for the treatment of hypo-
active sexual desire, interest, and/or arousal. However, 
as work continues to enhance our understanding of the 
neurochemical systems involved in sexual excitation and 
inhibition, it is likely that other drugs will be subjected 
to clinical trials. It has been predicted that combined 
pharmacological and traditional talk therapies will have 
better efficacy than either alone.701 However it is not 
yet known whether some women, pre- or post-meno-
pausal, will retain their restoration of sexual arousal 
and desire if the pharmacological treatment is discontin-
ued. All of this could be modeled in rats or other spe-
cies using appropriate behavioral analyses. It will also 
become vitally important to understand how testoster-
one or other androgens are working in the female brain. 
Although a good starting point is to examine whether 
they operate on classic intracellular or membrane bound 
receptors, it may also be the case that they are aroma-
tized into estrogens to induce their actions. This will be 
important in determining how testosterone sets up the 
neurochemical substrates that bring sexual incentive 
cues into conscious awareness in the female brain. Like-
wise, a greater understanding of the roles played by OT 
and prolactin in women is critical in helping to elucidate 
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the mechanisms of orgasm and its aftermath. This may 
help to differentiate women with orgasm difficulties 
who have either never experienced them or experienced 
them fleetingly vs those that have sluggish brain and/or 
autonomic reactions to sexual stimulation.

How Does Sexual Responding Change with Age?

As the so-called “Baby Boomer” generation is aging 
and millions of women world-wide are reaching meno-
pause and beyond, more research must be focused on 
how the aging female brain and body change in response 
to the hormonally unstable and ultimately hypogonadal 
condition that menopause engages (see Chapter 37). 
Women experience changes in cognition and emotional 
reactions, in addition to bone density and fat deposition 
as a function of altered metabolism. Sexuality changes 
during aging as a function of experience and expectation, 
relationship status, hormonal alterations, and changes 
in genital sensitivity. Very little is understood about 
age-related changes in the brains of women in regards 
to sexuality, and little has been studied in this regard in 
animals. Aging brings about cardiovascular and meta-
bolic changes associated with conditions such as diabe-
tes and hypertension, which can blunt sexual arousal 
and desire in both men and women.35 The treatments 
for those conditions also have sexual “side effects” that 
blunt sexual arousal and possibly desire and orgasm,35 
so treatments that restore sexual function must be able 
to operate independently of those mechanisms and not 
exacerbate them.

Can We Infer Mechanisms in Females from 
Similar Mechanisms in Males?

There is no question that substantial sex differences 
exist in morphology and brain neurochemical function702 
that underlie differences between females and males in 
response to sexual stimuli,703 motivation,704 control of 
pituitary hormone systems in rodents,705 pain,706 and 
mental health.707 Some of these mechanisms have their 
origin in the initial sexual differentiation that occurs in 
the neonatal brain,708,709 whereas others do not.710,711 In 
particular, McCarthy et al.711 note that a common strat-
egy in the experimental approach taken by many neuro-
endocrinologists is “after I understand the phenomenon 
in males, I’ll check whether it’s there in females”. This 
approach has also been taken in understanding the 
hemodynamic of sexual arousal in men and women, 
often with the assumption that anything that induces 
penile erection in men should also work the same way 
for the induction of labial, clitoral, and vaginal erec-
tion in women. Certainly PDE-5 inhibitors do increase 
vaginal vasocongestion but many women are unaware 
of that, leading to the phenomenon of “discordance” 

between subjective reports of sexual arousal and physi-
ological measures of such arousal.151 Such discordance 
between subjective and physiological sexual arousal 
is not observed in men unless they have consumed a 
threshold dose of alcohol that blunts erection but dis-
inhibits subjective arousal and desire.13,712 There may 
be several reasons for this. Sex differences likely exist 
in the cellular response to cyclic vs continuous gonadal 
hormone output; in the reaction to context; and in indi-
vidual responses to preexisting stressors. Individual 
differences also exist in terms of experiences with, and 
attitudes toward, different types of erotic stimuli that 
are presented to provoke a genital response. These sex 
and individual differences conspire to create differences 
in conscious sexual response which is reflected in brain 
activation (e.g., laterality in amygdala responsivity703). 
Although it is difficult to find sex differences in the 
human sexual response cycle, other than the ability of 
some women to have multiple orgasms relative to men’s 
inability to do so, there are obvious sex differences in the 
behavior of female and male rodents. Those differences 
are typically “reverse-engineered” back to differences in 
differentiation of brain and body, and to specific differ-
ences in brain area, for example, the sexually dimorphic 
nucleus of the preoptic area. Indeed, lesions of the POA 
in male rats disrupt erection, ejaculation, and mounting 
behavior, whereas lesions in female rats disrupt solicita-
tions and pacing, and may affect the hemodynamics of 
clitoral engorgement or the ability of genital stimulation 
(clitoral and/or cervical) to induce reward. At one level, 
those functions and the behaviors they subserve seem 
very different. At another, however, they both involve the 
responses to genital stimulation that bring about direct 
sexual contact: solicitations and pacing in females and 
mounting in males. In fact, in the human brain activa-
tion literature, there is an overwhelming preopoderance 
of sex similarities in regional responses to erotic visual 
stimuli.45,713 Thus, in rats, the same regions may respond 
similarly to sexual stimulation but induce output that 
appears different at a behavioral level. In humans, the 
behavioral differences may well have disappeared, or 
been impinged upon by a greater executive cortical/
cognitive control over sexual behavior that is medi-
ated more by context and social learning. However, rats 
clearly have the capacity to make both Pavlovian (stimu-
lus–stimulus) and operant (response-reinforcer) associa-
tions between sexual stimuli and sexual responses that 
can span first- and second-order conditioning, even to 
the point of conditioning of sexual fetishes for rodent 
tethering jackets.28,714

Context is also an important component of sexual 
behavior in both female and male rats.50,70,668 It may well 
be the case that sex similarities exist in rats, as they do 
in humans, especially at “higher” emotional and cogni-
tive processing levels that include cortical processing. It 
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is the case that human neuropsychology and brain imag-
ing studies on incentive sexual responses have focused on 
cortical and limbic structures, usually with a mention that 
the hypothalamus is or is not activated, whereas animal 
studies have focused largely on hypothalamic and some 
limbic activation of immediate-early gene products, or 
microdialysis/voltammetric analyses of neurotransmit-
ter turnover. Rarely do neuroendocrinologists study the 
cerebral cortex, nor do neuropsychologists delve into the 
hypothalamus, and this confounds our understanding. 
In fact, analysis of both animal and human brain activa-
tion to sexual stimulation reveals nearly identical cortical 
responses,64 suggesting that even “higher processes” have 
been conserved, and that the sexual brain is not simply 
reducible to hypothalamic processing.

How Does Environmental Context Modulate 
Hormonal Action on Female Sexual Behavior?

A number of examples were given earlier of nonsteroid 
hormone factors that can influence steroid receptors, and 
subsequently behavioral response. In addition, we dis-
cussed the idea that stimuli from the environment (mating 
stimulation) can activate steroid receptors indirectly by 
ligand-independent activation. This mechanism provides 
a means by which an array of environmental influences 
could alter sexual response. Do these mechanisms come 
into play in the real world of a wild rat? Do attempted 
mounts by conspecifics or other environmental factors 
alter the timing of the commencement of sexual behav-
iors? And might particular contexts or types of stimula-
tion activate steroid receptors in women thus influencing 
sexual response? It is also important to consider whether 
incentive cues associated with sexual reward alter steroid 
ligand–receptor interactions and whether such changes, if 
any, can compensate for the loss of hormonal priming that 
occurs in hypogonadal individuals.

Final Remarks

Our understanding of the neurobiology of female sex-
ual function is fast reaching a level of depth and sophis-
tication that rivals that of male sexual function. Animal 
models of human female sexual function and dysfunc-
tion have been proposed that emphasize reward-related 
learning and cognitive assessment of context. Within 
these new paradigms, the role of ovarian hormones, 
gene expression, neurochemical mediation, and the 
impact of brain lesions (both surgical and accidental) 
are beginning to be assessed. The sexual brain integrates 
sensory and hormonal inputs to the hypothalamus to 
activate incentive motivation and emotional responses 
in limbic structures. These are under cortical control to 
inhibit unnecessary or competing responses, or indeed 
to inhibit sexual responding altogether in inappropriate 

contexts or situations. The combined actions of these sys-
tems optimize female sexual responding, so that what is 
most rewarding is also likely to be the most reproduc-
tively efficient. That these systems are essentially con-
served in all mammals—and perhaps all vertebrates—is 
a testament to our continued survival on this planet, sur-
vival that depends critically on the ability of females to 
approach, solicit, pace, and engage in rewarding sexual 
activities under their control.
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