UNIVERSITY

Course: CHEMISTRY	Number: 205/4	Section: 03 and 04	
Instructors: P.H. Bird, C.W. Rogers	Date: $14^{\text {th }}$ April, 2008	Time: 14:00-17:00	\# of pages: 15
Examination: Final			
Materials Allowed: A data sheet and periodic table are attached to this paper - no other materials are allowed. You may tear off the data sheet and periodic table if you wish. Calculators Allowed: Yes (But cell phones or electronic dictionaries may NOT be used as calculators.)			
Special Instructions: This exam contains three sections. Please read the instructions before each section carefully.			

LAST NAME:
STUDENT NUMBER:

FIRST NAME: \qquad
SIGNATURE: \qquad

PLEASE READ THIS PAGE WHILE YOU WAIT TO START.

- Check that you have 15 pages including this page. Please write your ID \# on all pages.
- A periodic table and "useful information" are provided; you CAN remove those pages.
- Non-programmable calculators are allowed; cell phones \& electronic dictionaries are not.
- Read ALL questions carefully BEFORE starting the exam, and answer ALL questions.
- Write all answers in the space provided (use the backs of the pages for rough work).
- SHOW YOUR WORK FOR ALL CALCULATIONS, or you will NOT get full marks.

GOOD LUCK! PLEASE RAISE YOUR HAND IF YOU NEED CLARIFICATION.

Please leave this area blank

Section I. The following 20 questions are multiple choice. They are worth 2 marks each. You may do rough work on your exam paper, but it will not be marked. You must mark your answers using a soft pencil on the machine readable answer form provided. Do not forget to mark your name and student number (your birth date is not required).

1. All of the following processes are chemical properties of sodium, except:
i. It's freshly cut shiny surface turns black on exposure to air.
ii. It is a solid at $25^{\circ} \mathrm{C}$, but changes to a liquid at $98^{\circ} \mathrm{C}$.
iii. When a small piece is placed in water, it sizzles, and a gas is formed.
iv. When exposed to chlorine gas it forms a compound which melts at $801{ }^{\circ} \mathrm{C}$.
v. Its vapour (for example, in streetlights) emits yellow light when an electric current is passed through it.
a. (iii) and (iv)
b. (i) and (v)
c. (ii) and (v)
d. (ii), (iv) and (v)
e. (iii), (iv) and (v)
2. A student gradually heats some tap water in a beaker in the lab. When the water reaches $30^{\circ} \mathrm{C}$ bubbles slowly begin to form on the walls of the beaker and eventually float to the surface. At 100 ${ }^{\circ} \mathrm{C}$ bubbles are forming rapidly throughout the water as it boils. Which of the following statements describes the composition of the bubbles at the lower temperature, and at the boiling point?

	At $\mathbf{3 0}{ }^{\circ} \mathbf{C}$	At $\mathbf{1 0 0}{ }^{\mathbf{\circ} \mathbf{C}}$
a.	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
b.	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$\mathrm{OH}^{-}(\mathrm{g})+\mathrm{H}^{+}(\mathrm{g})$
c.	Mostly $\mathrm{O}_{2}(\mathrm{~g})$ and $\mathrm{N}_{2}(\mathrm{~g})$ and some $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
d.	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$\mathrm{Mostly} \mathrm{O}_{2}(\mathrm{~g})$ and $\mathrm{N}_{2}(\mathrm{~g})$, and some $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
e.	$\mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$	$\mathrm{CO}_{2}(\mathrm{~g})$

3. An ion of aluminum- $26, \mathrm{Al}^{3+}$ has:
a. 13 protons, 13 neutrons, and 13 electrons
b. 13 protons, 10 neutrons, and 26 electrons
c. 13 protons, 13 neutrons, and 16 electrons
d. 10 protons, 13 neutrons, and 13 electrons
e. 13 protons, 13 neutrons, and 10 electrons
\qquad
4. Which pair of elements would be most likely to form an ionic compound with each other?
a. Phosphorus and Bromine
b. Zinc and Potassium
c. Fluorine and aluminum
d. Carbon and sulphur
e. Titanium and zinc
5. Which of the following statements does not correctly describe the reaction between sodium carbonate and hydrochloric acid?
a. The reaction can be classified as an acid-base reaction.
b. The reaction would not be visibly obvious.
c. The sodium ions would be described as spectator ions.
d. The reaction involves the evolution of gas.
e. None - all of the above statements are true.
6. Complete the following sentence: Atoms emit electromagnetic radiation including visible light:
a. when electrons in atoms jump from lower to higher energy levels.
b. when atoms condense from a gas to a liquid
c. when electrons in atoms move across nodes in atomic orbitals
d. when electrons in atoms fall from higher to lower energy levels.
e. when electrons fall into the nucleus and are captured by protons.
7. In an electron microscope, electrons are accelerated to high velocities and have associated wavelengths suitable for "viewing" very small objects. What is the wavelength associated with an electron moving at $7.0 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$? (The mass of the electron is $9.11 \times 10^{-28} \mathrm{~g}$)
a. $\quad 1.0 \times 10^{-13} \mathrm{~m}$
b. $\quad 1.0 \times 10^{-7} \mathrm{~m}$
c. 1.0 m
d. $1.0 \times 10^{-10} \mathrm{~m}$
e. $1.0 \times 10^{13} \mathrm{~m}$
\qquad
8．Which diagram correctly represents the ground state electronic configuration of oxygen？

	1s	2s	2p	
a．	\uparrow	\uparrow		$\uparrow \uparrow$
b．	\uparrow	中		
c．	中1	中	¢ \downarrow	\uparrow
d．	\uparrow	\uparrow	\uparrow	$\uparrow \uparrow$
e．	\uparrow	\uparrow		$\uparrow \downarrow \uparrow$

9．Consider each of the configurations shown in question 8 ．Which are not ground states according to Hund＇s rule？
a．Configurations a，c，d and e．
b．Configuration b only．
c．Configurations a，d and e．
d．Configuration a only．
e．Configurations band c．

10．By what name are the elements of group 17 of the periodic table known？
a．The chalcogens
b．The acid gases
c．The actinides
d．The halogens
e．The fluorinoids

11．An element has the following sequence of ionization energies：

$$
\begin{array}{lllll}
\mathrm{X} & \rightarrow & \mathrm{X}^{+} & \text {I.E. }=737 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{X}^{+} & \rightarrow & \mathrm{X}^{2+} & \text { I.E. }=1450 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\mathrm{X}^{2+} & \rightarrow & \mathrm{X}^{3+} & \text { I.E. }=7732 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
$$

Which of the following elements is it？
a．Hydrogen
b．Sodium
c．Magnesium
d．Aluminum
e．Argon
\qquad
12. What kind of oxides would be compounds such as $\mathrm{NO}_{2}, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{SO}_{2}$ etc. be?
a. Acidic oxides
b. Ionic oxides
c. Neutral oxides
d. Basic oxides
e. Bionic oxides
13. What is the H^{+}concentration in hydrochloric acid with a pH of 2.30 ?
a. $\quad 2.30 \mathrm{M}$
b. 0.0050 M
c. $1.99 \times 10^{2} \mathrm{M}$
d. -2.30 M
e. 0.0030 M
14. Crystals of ionic compounds are held together by electrostatic forces. Which of the following statements characterize the potential energy associated with these forces?
a. Directly proportional to the product of the charges on the ions, and inversely proportional to the distance between them.
b. Directly proportional to the product of the charges on the ions, and directly proportional to the distance between them.
c. Inversely proportional to the product of the charges on the ions, and directly proportional to the distance between them.
d. Inversely proportional to the product of the charges on the ions, and directly proportional to the distance between them.
e. Directly proportional to the sum of the charges on the ions and directly proportional to the distance between them.
15. In the compounds indicated, which pair of elements would participate in the most polar covalent bond?
a. The two nitrogen atoms in $\mathrm{H}-\mathrm{N}=\mathrm{N}-\mathrm{H}(\mathrm{g})$
b. The two oxygen atoms in $\mathrm{H}-\mathrm{O}-\mathrm{O}-\mathrm{H}$ (1)
c. The fluorine atoms in $\mathrm{F}-\mathrm{F}(\mathrm{g})$
d. Cesium and chlorine in $\mathrm{CsCl}(\mathrm{s})$
e. Silicon and carbon in $\mathrm{Cl}_{3} \mathrm{Si}-\mathrm{CH}_{3}$ (l)
16. Two moles of nitrogen gas are heated from $20^{\circ} \mathrm{C}$ to $350^{\circ} \mathrm{C}$ while the volume is kept constant. How does the density of the nitrogen change?
a. It stays the same.
b. It increases.
c. It decreases.
d. Because nitrogen is a gas, it has zero density.
e. There is not enough information given to answer the question.
17. What is the concentration of chloride ions in a solution prepared by dissolving 8.3 g of CoCl_{3} in 125 mL of $\mathrm{H}_{2} \mathrm{O}$?
a. $\quad 0.019 \mathrm{M}$
b. 0.050 M
c. 0.15 M
d. 0.40 M
e. 1.2 M
18. Which of the following diagram(s) represents orbital(s) where the quantum number, $\ell=1$?

(i)

(ii)

(iii)

(iv)
a) Orbital (i)
b) Orbital (ii)
c) Orbitals (i) and (ii)
d) Orbitals (iii) and (iv)
e) All of them
19. Which of the classifications below apply to the reaction of copper(II) oxide with hydrogen?

$$
\mathrm{CuO}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cu}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

a) Acid - base
b) Precipitation
c) Oxidation reduction (redox)
d) Gas-forming
e) None of the above
20. Nitric oxide and oxygen react together to form nitrogen dioxide according to the reaction shown below:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

Consider the initial mixture of reactants shown below. Which of the outcomes shown after the reaction arrow best represents the reaction mixture after the reactants have reacted as completely as possible?

You may use this space for rough work

Section II. The following 6 questions require short answers and should be answered in the space provided on this paper.

21. (3 marks) Provide the missing name or formula for each substance below:
$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
$\mathrm{Na}_{2} \mathrm{HPO}_{4}$
The acid found in vinegar
\qquad
\qquad
\qquad
dichlorine heptoxide
ammonium carbonate
"baking soda"
22. (6 marks) Imagine that an aqueous solution containing a particular cation (dark sphere) is mixed with a solution containing a particular anion (light sphere). Three possible outcomes are shown below the arrow. Which outcome corresponds to each of the following initial mixtures?

$\begin{array}{\|cc} \hline 0 & 0 \\ 0 & 0 \end{array}+\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	(a) $2 \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow$ (b) $\mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow$ (c) $2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{S}^{2-}(\mathrm{aq}) \rightarrow$	
	Which initial mixture would give the outcome shown to the left?	Explain briefly.
$\begin{array}{\|cccc\|} \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$		

23. (4 marks) Explain why sodium is a strong reducing agent. Provide one example of a balanced equation illustrating this behaviour.
24. (5 marks) When SO_{3} gains two electrons, $\mathrm{SO}_{3}{ }^{2-}$ forms.
(a) Which pictures below best illustrates the change in molecular geometry around S? Why?

(b) Does molecular polarity change during this reaction? Explain briefly.
25. (8 marks) For each of the diagrams below, mark in all the missing lone-pairs and formal charges where appropriate. Do not change the number of bonds, and respect the charges on the species shown to their left. Supply the information requested in the right-hand column.

Charge	Lewis Structure	
zero		(a) Electron pair (basic) geometry
		(b) Molecular (observed) geometry
-2	(c) Xenon hybridization	

26. (4 marks) The molecule tetracyanoethylene has been used in attempts to synthesis organic superconducting materials. Its structure is shown below.

a) How many sigma (σ) bonds does it contain (in total)?
b) How many pi (π) bonds does it contain (in total)?
c) Is this molecule polar, or non-polar?
d) Sketch how two p-orbitals overlap to form a π - bond.

Section III. Answer the following 2 problems with complete written answers on the exam paper. Use the backs of the pages if you need more space. Be sure to provide adequate explanations or details to justify your answers.
27. (8 marks) The foul odour of rancid butter is due largely to butyric acid, a compound containing carbon, hydrogen and oxygen. Combustion analysis of a 4.30 g sample of butyric acid produced 8.59 g of CO_{2} and 3.52 g of $\mathrm{H}_{2} \mathrm{O}$. Find the empirical formula of butyric acid.
28. (12 marks) Coal typically contains about 1.6% sulfur by mass. When coal is burned, the sulfur is converted to sulfur dioxide. To prevent air pollution, coal-burning power plants treat this sulfur dioxide with calcium oxide (CaO) to form calcium sulfite $\left(\mathrm{CaSO}_{3}\right)$:

$$
\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{CaO}(\mathrm{~s}) \rightarrow \mathrm{CaSO}_{3}(\mathrm{~s})
$$

a) Show that the daily mass (in kg) of CaO needed by a power plant that uses $6.60 \times 10^{6} \mathrm{~kg}$ of coal per day is $1.8 \times 10^{5} \mathrm{~kg}$.
b) Without this treatment, what volume of SO_{2} gas (at $25^{\circ} \mathrm{C}$ and 1 atm) would have been emitted into the air per day?

ID Number
Use this page for rough work, or if you run out of space.

POTENTIALLY USEFUL INFORMATION

Atomic mass unit	$1 \mathrm{amu}=1.66054 \times 10^{-27} \mathrm{~kg}$
Avogadro's number	$\mathrm{N}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Definition of Joule	$1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2}$
Definition of Pascal	$1 \mathrm{~Pa}=1 \mathrm{~kg} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~s}^{-2}$
Gas constant	$\mathrm{R}=0.08206 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=8.314 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Planck's constant	$\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
Pressure units	$760 \mathrm{~mm} \mathrm{Hg}=760$ torr $=1 \mathrm{~atm}=101.325 \mathrm{kPa}=1.01325 \mathrm{bar}$
Rydberg constant	$R=1.0974 \times 10^{7} \mathrm{~m}^{-1}$
Speed of light	$\mathrm{c}=2.9979 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}$
Electromagnetic radiation	$c=\lambda \cdot v$
Energy of photon	$E=h \cdot v$
de Broglie's equation	$\lambda=\frac{h}{m \cdot v}$
Hydrogen atom	$E=-\frac{R \cdot h \cdot c}{n^{2}}$
Coulomb's law	$E=\left(2.13 \times 10^{-19} \mathrm{~J} \cdot \mathrm{~nm}\right) \cdot \frac{Q_{1} \cdot Q_{2}}{d}$
Ideal gas law	$P \cdot V=n \cdot R \cdot T$
Kinetic energy	$K E=1 / 2 \cdot m \cdot v^{2}$
Maxwell's equation	$\sqrt{\bar{u}^{2}}=\sqrt{\frac{3 \cdot R \cdot T}{M}}$
Graham's law	$\frac{\text { Rate of effusion of gas } 1}{\text { Rate of effusion of gas } 2}=\sqrt{\frac{M \text { of gas } 2}{M \text { of gas } 1}}$

	Os ¢ ¢ ¢
\＆	S
	玉 $\overline{\underline{z}}$
ロッ	\％
	2
\＆	\％
${ }_{\circ}^{\circ}$	万
¢	\bigcirc
8）${ }^{\text {® }}$	\％
¢ \％	す
\checkmark	の云矦
8 8	スロ守
呺家	
¢ $\sim_{0}^{\text {of }}$	8）
in ${ }_{\sim}^{\text {a }}$	め¢ ¢ ¢

